Nuprl Lemma : omral_one_wf
∀g:OCMon. ∀r:CDRng.  (11 ∈ |omral(g;r)|)
Proof
Definitions occuring in Statement : 
omral_one: 11
, 
omralist: omral(g;r)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cdrng: CDRng
, 
ocmon: OCMon
, 
set_car: |p|
Definitions unfolded in proof : 
omral_one: 11
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
cdrng: CDRng
, 
crng: CRng
, 
rng: Rng
Lemmas referenced : 
omral_inj_wf, 
grp_id_wf, 
rng_one_wf, 
cdrng_wf, 
ocmon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesis
Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.    (11  \mmember{}  |omral(g;r)|)
Date html generated:
2016_05_16-AM-08_26_31
Last ObjectModification:
2015_12_28-PM-06_38_21
Theory : polynom_3
Home
Index