Nuprl Lemma : omral_inj_wf

g:OCMon. ∀r:CDRng. ∀k:|g|. ∀v:|r|.  (inj(k,v) ∈ |omral(g;r)|)


Proof




Definitions occuring in Statement :  omral_inj: inj(k,v) omralist: omral(g;r) all: x:A. B[x] member: t ∈ T cdrng: CDRng rng_car: |r| ocmon: OCMon grp_car: |g| set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T omral_inj: inj(k,v) uall: [x:A]. B[x] and: P ∧ Q subtype_rel: A ⊆B ocmon: OCMon omon: OMon so_lambda: λ2x.t[x] prop: abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) add_grp_of_rng: r↓+gp grp_car: |g| oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t grp_id: e pi2: snd(t) omralist: omral(g;r) cdrng: CDRng crng: CRng rng: Rng
Lemmas referenced :  cdrng_is_abdmonoid oal_inj_wf oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf grp_car_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf set_car_wf oalist_wf rng_car_wf cdrng_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination hypothesis dependent_functionElimination applyEquality sqequalRule instantiate because_Cache lambdaEquality productEquality setElimination rename cumulativity universeEquality functionEquality unionElimination equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality independent_pairFormation

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k:|g|.  \mforall{}v:|r|.    (inj(k,v)  \mmember{}  |omral(g;r)|)



Date html generated: 2017_10_01-AM-10_05_18
Last ObjectModification: 2017_03_03-PM-01_10_29

Theory : polynom_3


Home Index