Nuprl Lemma : omral_times_assoc_a
∀[g:OCMon]. ∀[a:CDRng]. ∀[ps,qs,rs:|omral(g;a)|].  ((ps ** (qs ** rs)) = ((ps ** qs) ** rs) ∈ |omral(g;a)|)
Proof
Definitions occuring in Statement : 
omral_times: ps ** qs
, 
omralist: omral(g;r)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
cdrng: CDRng
, 
ocmon: OCMon
, 
set_car: |p|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
Lemmas referenced : 
omral_times_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
because_Cache, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[g:OCMon].  \mforall{}[a:CDRng].  \mforall{}[ps,qs,rs:|omral(g;a)|].    ((ps  **  (qs  **  rs))  =  ((ps  **  qs)  **  rs))
Date html generated:
2016_05_16-AM-08_26_15
Last ObjectModification:
2015_12_28-PM-06_38_30
Theory : polynom_3
Home
Index