Nuprl Lemma : omral_times_assoc_a

[g:OCMon]. ∀[a:CDRng]. ∀[ps,qs,rs:|omral(g;a)|].  ((ps ** (qs ** rs)) ((ps ** qs) ** rs) ∈ |omral(g;a)|)


Proof




Definitions occuring in Statement :  omral_times: ps ** qs omralist: omral(g;r) uall: [x:A]. B[x] equal: t ∈ T cdrng: CDRng ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T assoc: Assoc(T;op) infix_ap: y all: x:A. B[x]
Lemmas referenced :  omral_times_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution sqequalRule hypothesis dependent_functionElimination thin hypothesisEquality isectElimination because_Cache isect_memberEquality axiomEquality

Latex:
\mforall{}[g:OCMon].  \mforall{}[a:CDRng].  \mforall{}[ps,qs,rs:|omral(g;a)|].    ((ps  **  (qs  **  rs))  =  ((ps  **  qs)  **  rs))



Date html generated: 2016_05_16-AM-08_26_15
Last ObjectModification: 2015_12_28-PM-06_38_30

Theory : polynom_3


Home Index