Nuprl Lemma : omral_times_assoc

g:OCMon. ∀a:CDRng.  Assoc(|omral(g;a)|;λps,qs. (ps ** qs))


Proof




Definitions occuring in Statement :  omral_times: ps ** qs omralist: omral(g;r) assoc: Assoc(T;op) all: x:A. B[x] lambda: λx.A[x] cdrng: CDRng ocmon: OCMon set_car: |p|
Definitions unfolded in proof :  assoc: Assoc(T;op) infix_ap: y all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B ocmon: OCMon omon: OMon so_lambda: λ2x.t[x] prop: and: P ∧ Q abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff so_apply: x[s] cand: c∧ B abdmonoid: AbDMon dset: DSet squash: T cdrng: CDRng crng: CRng rng: Rng true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q abgrp: AbGrp grp: Group{i} iabmonoid: IAbMonoid imon: IMonoid oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) add_grp_of_rng: r↓+gp grp_car: |g| omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t grp_id: e pi2: snd(t) rng_mssum: rng_mssum set_eq: =b label: ...$L... t rng_when: rng_when loset: LOSet poset: POSet{i} qoset: QOSet
Lemmas referenced :  omon_inc subtype_rel_sets abmonoid_wf ulinorder_wf grp_car_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf abdmonoid_wf set_car_wf omralist_wf dset_wf cdrng_wf ocmon_wf omral_lookups_same_a omral_times_wf2 squash_wf true_wf rng_car_wf lookup_omral_times iff_weakening_equal mset_for_functionality oset_of_ocmon_wf add_grp_of_rng_wf_b grp_sig_wf monoid_p_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf mset_for_wf rng_when_wf oset_of_ocmon_wf0 dset_of_mon_wf0 add_grp_of_rng_wf rng_times_wf lookup_wf rng_zero_wf omral_times_wf list_wf omral_dom_wf mset_prod_wf mset_for_dom_shift omral_times_dom mset_mem_wf mset_diff_wf rng_wf lookup_omral_eq_zero rng_times_zero rng_when_of_zero assert_functionality_wrt_uiff bnot_wf mset_mem_diff mset_prod_wf2 omral_dom_wf2 iff_transitivity not_wf iff_weakening_uiff assert_of_band assert_of_bnot mset_for_of_id rng_mssum_functionality_wrt_equal rng_mssum_wf rng_times_mssum_l rng_times_when_l rng_times_mssum_r rng_times_when_r rng_mssum_when_swap rng_mssum_swap rng_when_swap grp_eq_sym set_eq_wf fset_for_when_eq prod_in_mset_prod loset_wf mon_assoc iabmonoid_subtype_imon abmonoid_subtype_iabmonoid abdmonoid_abmonoid ocmon_subtype_abdmonoid subtype_rel_transitivity iabmonoid_wf imon_wf rng_times_assoc
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lambdaFormation isect_memberFormation introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality instantiate isectElimination hypothesis because_Cache lambdaEquality productEquality setElimination rename cumulativity universeEquality functionEquality unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality independent_pairFormation promote_hyp isect_memberEquality axiomEquality imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}g:OCMon.  \mforall{}a:CDRng.    Assoc(|omral(g;a)|;\mlambda{}ps,qs.  (ps  **  qs))



Date html generated: 2017_10_01-AM-10_06_29
Last ObjectModification: 2017_03_03-PM-01_18_31

Theory : polynom_3


Home Index