Nuprl Lemma : mset_for_of_id

s:DSet. ∀g:IAbMonoid. ∀a:MSet{s}.  ((msFor{g} x ∈ a. e) e ∈ |g|)


Proof




Definitions occuring in Statement :  mset_for: mset_for mset: MSet{s} all: x:A. B[x] equal: t ∈ T iabmonoid: IAbMonoid grp_id: e grp_car: |g| dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] so_lambda: λ2x.t[x] member: t ∈ T top: Top so_apply: x[s] uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid dset: DSet implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop:
Lemmas referenced :  mset_for_elim_lemma all_mset_elim equal_wf grp_car_wf mset_for_wf grp_id_wf set_car_wf mset_wf sq_stable__equal all_wf list_wf mon_for_wf iabmonoid_wf dset_wf mon_for_of_id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut addLevel sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality lambdaEquality isectElimination setElimination rename independent_functionElimination productElimination levelHypothesis because_Cache

Latex:
\mforall{}s:DSet.  \mforall{}g:IAbMonoid.  \mforall{}a:MSet\{s\}.    ((msFor\{g\}  x  \mmember{}  a.  e)  =  e)



Date html generated: 2016_05_16-AM-07_47_49
Last ObjectModification: 2015_12_28-PM-06_03_01

Theory : mset


Home Index