Nuprl Lemma : mset_prod_wf2

g:DMon. ∀a,b:FiniteSet{g↓set}.  (a × b ∈ FiniteSet{g↓set})


Proof




Definitions occuring in Statement :  mset_prod: a × b finite_set: FiniteSet{s} all: x:A. B[x] member: t ∈ T dset_of_mon: g↓set dmon: DMon
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T finite_set: FiniteSet{s} uall: [x:A]. B[x] dmon: DMon mon: Mon so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] prop: mset_prod: a × b le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q dset_of_mon: g↓set set_car: |p| pi1: fst(t) infix_ap: y squash: T true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  set_eq_wf b2i_bounds iff_weakening_equal mset_count_inj true_wf squash_wf mset_inj_wf grp_car_wf grp_op_wf infix_ap_wf mset_inj_wf_f mset_union_mon_wf mset_for_wf false_wf mset_count_bound_for_union dmon_wf finite_set_wf nat_wf dset_of_mon_wf mset_count_wf le_wf all_wf dset_of_mon_wf0 set_car_wf mset_prod_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut dependent_set_memberEquality lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename hypothesis isectElimination sqequalRule lambdaEquality applyEquality natural_numberEquality because_Cache independent_pairFormation functionEquality independent_functionElimination imageElimination equalityTransitivity equalitySymmetry intEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination

Latex:
\mforall{}g:DMon.  \mforall{}a,b:FiniteSet\{g\mdownarrow{}set\}.    (a  \mtimes{}  b  \mmember{}  FiniteSet\{g\mdownarrow{}set\})



Date html generated: 2016_05_16-AM-07_52_05
Last ObjectModification: 2016_01_16-PM-11_40_21

Theory : mset


Home Index