Nuprl Lemma : mset_prod_wf2
∀g:DMon. ∀a,b:FiniteSet{g↓set}.  (a × b ∈ FiniteSet{g↓set})
Proof
Definitions occuring in Statement : 
mset_prod: a × b, 
finite_set: FiniteSet{s}, 
all: ∀x:A. B[x], 
member: t ∈ T, 
dset_of_mon: g↓set, 
dmon: DMon
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
finite_set: FiniteSet{s}, 
uall: ∀[x:A]. B[x], 
dmon: DMon, 
mon: Mon, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_apply: x[s], 
prop: ℙ, 
mset_prod: a × b, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
dset_of_mon: g↓set, 
set_car: |p|, 
pi1: fst(t), 
infix_ap: x f y, 
squash: ↓T, 
true: True, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
set_eq_wf, 
b2i_bounds, 
iff_weakening_equal, 
mset_count_inj, 
true_wf, 
squash_wf, 
mset_inj_wf, 
grp_car_wf, 
grp_op_wf, 
infix_ap_wf, 
mset_inj_wf_f, 
mset_union_mon_wf, 
mset_for_wf, 
false_wf, 
mset_count_bound_for_union, 
dmon_wf, 
finite_set_wf, 
nat_wf, 
dset_of_mon_wf, 
mset_count_wf, 
le_wf, 
all_wf, 
dset_of_mon_wf0, 
set_car_wf, 
mset_prod_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
dependent_set_memberEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
because_Cache, 
independent_pairFormation, 
functionEquality, 
independent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}g:DMon.  \mforall{}a,b:FiniteSet\{g\mdownarrow{}set\}.    (a  \mtimes{}  b  \mmember{}  FiniteSet\{g\mdownarrow{}set\})
Date html generated:
2016_05_16-AM-07_52_05
Last ObjectModification:
2016_01_16-PM-11_40_21
Theory : mset
Home
Index