Nuprl Lemma : mset_prod_wf

g:DMon. ∀a,b:MSet{g↓set}.  (a × b ∈ MSet{g↓set})


Proof




Definitions occuring in Statement :  mset_prod: a × b mset: MSet{s} all: x:A. B[x] member: t ∈ T dset_of_mon: g↓set dmon: DMon
Definitions unfolded in proof :  mset_prod: a × b all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] dmon: DMon mon: Mon dset_of_mon: g↓set set_car: |p| pi1: fst(t) so_apply: x[s]
Lemmas referenced :  mset_for_wf dset_of_mon_wf mset_union_mon_wf mset_inj_wf_f infix_ap_wf set_car_wf dset_of_mon_wf0 grp_op_wf grp_car_wf mset_wf dmon_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis because_Cache applyEquality lambdaEquality setElimination rename functionEquality

Latex:
\mforall{}g:DMon.  \mforall{}a,b:MSet\{g\mdownarrow{}set\}.    (a  \mtimes{}  b  \mmember{}  MSet\{g\mdownarrow{}set\})



Date html generated: 2016_05_16-AM-07_52_01
Last ObjectModification: 2015_12_28-PM-05_59_57

Theory : mset


Home Index