Nuprl Lemma : mset_count_bound_for_union
∀s,s':DSet. ∀n:ℕ. ∀e:|s| ⟶ MSet{s'}. ∀x:|s'|.
  ((∀y:|s|. ((x #∈ e[y]) ≤ n)) 
⇒ (∀a:MSet{s}. ((x #∈ (msFor{<MSet{s'},⋃,0>} y ∈ a. e[y])) ≤ n)))
Proof
Definitions occuring in Statement : 
mset_union_mon: <MSet{s},⋃,0>
, 
mset_for: mset_for, 
mset_count: x #∈ a
, 
mset: MSet{s}
, 
nat: ℕ
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
dset: DSet
, 
nat: ℕ
, 
prop: ℙ
, 
guard: {T}
, 
top: Top
, 
mset_union_mon: <MSet{s},⋃,0>
, 
grp_id: e
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
null_mset: 0{s}
, 
mset_count: x #∈ a
, 
and: P ∧ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
quotient: x,y:A//B[x; y]
, 
mset: MSet{s}
, 
grp_car: |g|
, 
squash: ↓T
, 
infix_ap: x f y
, 
grp_op: *
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
Lemmas referenced : 
mset_ind_a, 
le_wf, 
mset_count_wf, 
mset_for_wf, 
mset_union_mon_wf, 
set_car_wf, 
mset_wf, 
sq_stable__le, 
nat_wf, 
dset_wf, 
mset_for_null_lemma, 
istype-void, 
count_nil_lemma, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
iff_weakening_equal, 
subtype_rel_self, 
abmonoid_subtype_iabmonoid, 
mset_for_mset_inj, 
true_wf, 
squash_wf, 
mset_count_union, 
mset_for_mset_sum, 
imax_lb
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
isectElimination, 
because_Cache, 
hypothesis, 
applyEquality, 
universeIsType, 
setElimination, 
rename, 
independent_functionElimination, 
inhabitedIsType, 
functionIsType, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
natural_numberEquality, 
productElimination, 
universeEquality, 
instantiate, 
baseClosed, 
imageMemberEquality, 
imageElimination
Latex:
\mforall{}s,s':DSet.  \mforall{}n:\mBbbN{}.  \mforall{}e:|s|  {}\mrightarrow{}  MSet\{s'\}.  \mforall{}x:|s'|.
    ((\mforall{}y:|s|.  ((x  \#\mmember{}  e[y])  \mleq{}  n))  {}\mRightarrow{}  (\mforall{}a:MSet\{s\}.  ((x  \#\mmember{}  (msFor\{<MSet\{s'\},\mcup{},0>\}  y  \mmember{}  a.  e[y]))  \mleq{}  n)))
Date html generated:
2019_10_16-PM-01_06_41
Last ObjectModification:
2018_10_15-PM-08_51_16
Theory : mset
Home
Index