Nuprl Lemma : mset_count_bound_for_union

s,s':DSet. ∀n:ℕ. ∀e:|s| ⟶ MSet{s'}. ∀x:|s'|.
  ((∀y:|s|. ((x #∈ e[y]) ≤ n))  (∀a:MSet{s}. ((x #∈ (msFor{<MSet{s'},⋃,0>y ∈ a. e[y])) ≤ n)))


Proof




Definitions occuring in Statement :  mset_union_mon: <MSet{s},⋃,0> mset_for: mset_for mset_count: #∈ a mset: MSet{s} nat: so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] subtype_rel: A ⊆B so_apply: x[s] dset: DSet nat: prop: guard: {T} top: Top mset_union_mon: <MSet{s},⋃,0> grp_id: e pi2: snd(t) pi1: fst(t) null_mset: 0{s} mset_count: #∈ a and: P ∧ Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  rev_implies:  Q iff: ⇐⇒ Q true: True quotient: x,y:A//B[x; y] mset: MSet{s} grp_car: |g| squash: T infix_ap: y grp_op: * cand: c∧ B uiff: uiff(P;Q)
Lemmas referenced :  mset_ind_a le_wf mset_count_wf mset_for_wf mset_union_mon_wf set_car_wf mset_wf sq_stable__le nat_wf dset_wf mset_for_null_lemma istype-void count_nil_lemma int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties iff_weakening_equal subtype_rel_self abmonoid_subtype_iabmonoid mset_for_mset_inj true_wf squash_wf mset_count_union mset_for_mset_sum imax_lb
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality sqequalRule lambdaEquality_alt isectElimination because_Cache hypothesis applyEquality universeIsType setElimination rename independent_functionElimination inhabitedIsType functionIsType equalityTransitivity equalitySymmetry isect_memberEquality_alt voidElimination independent_pairFormation int_eqEquality dependent_pairFormation_alt approximateComputation independent_isectElimination unionElimination natural_numberEquality productElimination universeEquality instantiate baseClosed imageMemberEquality imageElimination

Latex:
\mforall{}s,s':DSet.  \mforall{}n:\mBbbN{}.  \mforall{}e:|s|  {}\mrightarrow{}  MSet\{s'\}.  \mforall{}x:|s'|.
    ((\mforall{}y:|s|.  ((x  \#\mmember{}  e[y])  \mleq{}  n))  {}\mRightarrow{}  (\mforall{}a:MSet\{s\}.  ((x  \#\mmember{}  (msFor\{<MSet\{s'\},\mcup{},0>\}  y  \mmember{}  a.  e[y]))  \mleq{}  n)))



Date html generated: 2019_10_16-PM-01_06_41
Last ObjectModification: 2018_10_15-PM-08_51_16

Theory : mset


Home Index