Nuprl Lemma : mset_count_inj

s:DSet. ∀a,x:|s|.  ((x #∈ mset_inj{s}(a)) b2i(a (=bx) ∈ ℤ)


Proof




Definitions occuring in Statement :  mset_inj: mset_inj{s}(x) mset_count: #∈ a b2i: b2i(b) infix_ap: y all: x:A. B[x] int: equal: t ∈ T dset: DSet set_eq: =b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet mk_mset: mk_mset(as) mset_inj: mset_inj{s}(x) mset_count: #∈ a top: Top decidable: Dec(P) or: P ∨ Q infix_ap: y uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop:
Lemmas referenced :  set_car_wf dset_wf count_cons_lemma istype-void count_nil_lemma decidable__equal_int b2i_wf set_eq_wf full-omega-unsat intformnot_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis inhabitedIsType hypothesisEquality universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename sqequalRule dependent_functionElimination isect_memberEquality_alt voidElimination because_Cache unionElimination applyEquality natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality

Latex:
\mforall{}s:DSet.  \mforall{}a,x:|s|.    ((x  \#\mmember{}  mset\_inj\{s\}(a))  =  b2i(a  (=\msubb{})  x))



Date html generated: 2019_10_16-PM-01_06_38
Last ObjectModification: 2018_10_08-PM-00_09_10

Theory : mset


Home Index