Nuprl Lemma : mset_count_inj
∀s:DSet. ∀a,x:|s|.  ((x #∈ mset_inj{s}(a)) = b2i(a (=b) x) ∈ ℤ)
Proof
Definitions occuring in Statement : 
mset_inj: mset_inj{s}(x)
, 
mset_count: x #∈ a
, 
b2i: b2i(b)
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
, 
dset: DSet
, 
set_eq: =b
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
mk_mset: mk_mset(as)
, 
mset_inj: mset_inj{s}(x)
, 
mset_count: x #∈ a
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
infix_ap: x f y
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
set_car_wf, 
dset_wf, 
count_cons_lemma, 
istype-void, 
count_nil_lemma, 
decidable__equal_int, 
b2i_wf, 
set_eq_wf, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
inhabitedIsType, 
hypothesisEquality, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
because_Cache, 
unionElimination, 
applyEquality, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality
Latex:
\mforall{}s:DSet.  \mforall{}a,x:|s|.    ((x  \#\mmember{}  mset\_inj\{s\}(a))  =  b2i(a  (=\msubb{})  x))
Date html generated:
2019_10_16-PM-01_06_38
Last ObjectModification:
2018_10_08-PM-00_09_10
Theory : mset
Home
Index