Nuprl Lemma : prod_in_mset_prod

g:DMon. ∀a,b:MSet{g↓set}. ∀u,v:|g|.  ((↑(u ∈b a))  (↑(v ∈b b))  (↑((u v) ∈b a × b)))


Proof




Definitions occuring in Statement :  mset_prod: a × b mset_mem: mset_mem mset: MSet{s} assert: b infix_ap: y all: x:A. B[x] implies:  Q dset_of_mon: g↓set dmon: DMon grp_op: * grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q mset_prod: a × b member: t ∈ T prop: uall: [x:A]. B[x] dset_of_mon: g↓set set_car: |p| pi1: fst(t) dmon: DMon mon: Mon tlambda: λx:T. b[x] infix_ap: y subtype_rel: A ⊆B grp_car: |g| so_lambda: λ2x.t[x] mset_union_mon: <MSet{s},⋃,0> finite_set: FiniteSet{s} so_apply: x[s] mset: MSet{s} quotient: x,y:A//B[x; y] bool: 𝔹 bor_mon: <𝔹,∨b> guard: {T} uimplies: supposing a monoid_hom: MonHom(M1,M2) uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) exists: x:A. B[x] cand: c∧ B set_eq: =b pi2: snd(t)
Lemmas referenced :  assert_wf mset_mem_wf dset_of_mon_wf grp_car_wf mset_wf dmon_wf grp_op_wf subtype_rel_self set_car_wf dset_of_mon_wf0 mset_for_wf mset_union_mon_wf abmonoid_subtype_iabmonoid mset_inj_wf_f finite_set_wf bor_mon_wf mset_inj_wf mon_subtype_grp_sig abmonoid_subtype_mon subtype_rel_transitivity abmonoid_wf mon_wf grp_sig_wf bool_wf mset_union_bor_mon_hom monoid_hom_p_wf assert_functionality_wrt_uiff dist_hom_over_mset_for mset_for_functionality bmsexists_char set_eq_wf mset_mem_char mset_for_mset_inj assert_of_mon_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis sqequalRule setElimination rename applyEquality lambdaEquality because_Cache instantiate independent_isectElimination dependent_set_memberEquality independent_functionElimination equalityTransitivity productElimination dependent_pairFormation independent_pairFormation productEquality

Latex:
\mforall{}g:DMon.  \mforall{}a,b:MSet\{g\mdownarrow{}set\}.  \mforall{}u,v:|g|.    ((\muparrow{}(u  \mmember{}\msubb{}  a))  {}\mRightarrow{}  (\muparrow{}(v  \mmember{}\msubb{}  b))  {}\mRightarrow{}  (\muparrow{}((u  *  v)  \mmember{}\msubb{}  a  \mtimes{}  b)))



Date html generated: 2018_05_22-AM-07_45_56
Last ObjectModification: 2018_05_19-AM-08_31_14

Theory : mset


Home Index