Nuprl Lemma : mset_union_bor_mon_hom

s:DSet. ∀x:|s|.  IsMonHom{<MSet{s},⋃,0>,<𝔹,∨b>}(λu.(x ∈b u))


Proof




Definitions occuring in Statement :  mset_union_mon: <MSet{s},⋃,0> mset_mem: mset_mem all: x:A. B[x] lambda: λx.A[x] bor_mon: <𝔹,∨b> monoid_hom_p: IsMonHom{M1,M2}(f) dset: DSet set_car: |p|
Definitions unfolded in proof :  monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) mset_union_mon: <MSet{s},⋃,0> grp_car: |g| pi1: fst(t) bor_mon: <𝔹,∨b> grp_op: * pi2: snd(t) grp_id: e infix_ap: y all: x:A. B[x] member: t ∈ T top: Top and: P ∧ Q uall: [x:A]. B[x] dset: DSet
Lemmas referenced :  mset_mem_null_lemma mset_wf set_car_wf dset_wf fset_mem_union bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation independent_pairFormation isect_memberFormation introduction hypothesisEquality isectElimination axiomEquality because_Cache setElimination rename

Latex:
\mforall{}s:DSet.  \mforall{}x:|s|.    IsMonHom\{<MSet\{s\},\mcup{},0>,<\mBbbB{},\mvee{}\msubb{}>\}(\mlambda{}u.(x  \mmember{}\msubb{}  u))



Date html generated: 2016_05_16-AM-07_49_51
Last ObjectModification: 2015_12_28-PM-06_01_06

Theory : mset


Home Index