Nuprl Lemma : mset_union_bor_mon_hom
∀s:DSet. ∀x:|s|.  IsMonHom{<MSet{s},⋃,0>,<𝔹,∨b>}(λu.(x ∈b u))
Proof
Definitions occuring in Statement : 
mset_union_mon: <MSet{s},⋃,0>
, 
mset_mem: mset_mem, 
all: ∀x:A. B[x]
, 
lambda: λx.A[x]
, 
bor_mon: <𝔹,∨b>
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
mset_union_mon: <MSet{s},⋃,0>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
bor_mon: <𝔹,∨b>
, 
grp_op: *
, 
pi2: snd(t)
, 
grp_id: e
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
Lemmas referenced : 
mset_mem_null_lemma, 
mset_wf, 
set_car_wf, 
dset_wf, 
fset_mem_union, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
hypothesisEquality, 
isectElimination, 
axiomEquality, 
because_Cache, 
setElimination, 
rename
Latex:
\mforall{}s:DSet.  \mforall{}x:|s|.    IsMonHom\{<MSet\{s\},\mcup{},0>,<\mBbbB{},\mvee{}\msubb{}>\}(\mlambda{}u.(x  \mmember{}\msubb{}  u))
Date html generated:
2016_05_16-AM-07_49_51
Last ObjectModification:
2015_12_28-PM-06_01_06
Theory : mset
Home
Index