Nuprl Lemma : mset_mem_char
∀s:DSet. ∀x:|s|. ∀a:MSet{s}.  x ∈b a = ∃b{s} y ∈ a. (y (=b) x)
Proof
Definitions occuring in Statement : 
mset_for: mset_for, 
mset_mem: mset_mem, 
mset: MSet{s}
, 
bool: 𝔹
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
bor_mon: <𝔹,∨b>
, 
dset: DSet
, 
set_eq: =b
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
mset: MSet{s}
, 
member: t ∈ T
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
mset_for: mset_for, 
mset_mem: mset_mem, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
grp_car: |g|
, 
pi1: fst(t)
, 
bor_mon: <𝔹,∨b>
, 
bool: 𝔹
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
mem: a ∈b as
Lemmas referenced : 
bool_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
mem_functionality_wrt_permr, 
mon_for_wf, 
bor_mon_wf, 
iabmonoid_subtype_imon, 
abmonoid_subtype_iabmonoid, 
subtype_rel_transitivity, 
abmonoid_wf, 
iabmonoid_wf, 
imon_wf, 
set_car_wf, 
set_eq_wf, 
subtype_rel_self, 
iff_weakening_equal, 
mem_wf, 
permr_wf, 
list_wf, 
mset_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
thin, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
rename, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
isectElimination, 
hypothesisEquality, 
universeIsType, 
instantiate, 
universeEquality, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
independent_isectElimination, 
setElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityIstype, 
productIsType, 
sqequalBase
Latex:
\mforall{}s:DSet.  \mforall{}x:|s|.  \mforall{}a:MSet\{s\}.    x  \mmember{}\msubb{}  a  =  \mexists{}\msubb{}\{s\}  y  \mmember{}  a.  (y  (=\msubb{})  x)
Date html generated:
2020_05_20-AM-09_35_41
Last ObjectModification:
2020_01_08-PM-06_00_17
Theory : mset
Home
Index