Nuprl Lemma : mset_mem_char

s:DSet. ∀x:|s|. ∀a:MSet{s}.  x ∈b = ∃b{s} y ∈ a. (y (=bx)


Proof




Definitions occuring in Statement :  mset_for: mset_for mset_mem: mset_mem mset: MSet{s} bool: 𝔹 infix_ap: y all: x:A. B[x] equal: t ∈ T bor_mon: <𝔹,∨b> dset: DSet set_eq: =b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] mset: MSet{s} member: t ∈ T quotient: x,y:A//B[x; y] and: P ∧ Q implies:  Q mset_for: mset_for mset_mem: mset_mem squash: T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a dset: DSet so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] grp_car: |g| pi1: fst(t) bor_mon: <𝔹,∨b> bool: 𝔹 true: True iff: ⇐⇒ Q rev_implies:  Q mem: a ∈b as
Lemmas referenced :  bool_wf equal_wf squash_wf true_wf istype-universe mem_functionality_wrt_permr mon_for_wf bor_mon_wf iabmonoid_subtype_imon abmonoid_subtype_iabmonoid subtype_rel_transitivity abmonoid_wf iabmonoid_wf imon_wf set_car_wf set_eq_wf subtype_rel_self iff_weakening_equal mem_wf permr_wf list_wf mset_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution pointwiseFunctionalityForEquality introduction extract_by_obid hypothesis sqequalRule pertypeElimination promote_hyp thin productElimination equalityTransitivity equalitySymmetry inhabitedIsType rename applyEquality lambdaEquality_alt imageElimination isectElimination hypothesisEquality universeIsType instantiate universeEquality dependent_functionElimination because_Cache independent_functionElimination independent_isectElimination setElimination natural_numberEquality imageMemberEquality baseClosed equalityIstype productIsType sqequalBase

Latex:
\mforall{}s:DSet.  \mforall{}x:|s|.  \mforall{}a:MSet\{s\}.    x  \mmember{}\msubb{}  a  =  \mexists{}\msubb{}\{s\}  y  \mmember{}  a.  (y  (=\msubb{})  x)



Date html generated: 2020_05_20-AM-09_35_41
Last ObjectModification: 2020_01_08-PM-06_00_17

Theory : mset


Home Index