Nuprl Lemma : grp_eq_sym
∀[g:DMon]. ∀[a,b:|g|].  a =b b = b =b a
Proof
Definitions occuring in Statement : 
dmon: DMon
, 
grp_eq: =b
, 
grp_car: |g|
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
infix_ap: x f y
, 
dmon: DMon
, 
mon: Mon
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
Lemmas referenced : 
iff_imp_equal_bool, 
grp_eq_wf, 
equal_wf, 
grp_car_wf, 
assert_of_mon_eq, 
assert_wf, 
iff_wf, 
dmon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
equalitySymmetry, 
addLevel, 
productElimination, 
impliesFunctionality, 
because_Cache, 
sqequalRule, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[g:DMon].  \mforall{}[a,b:|g|].    a  =\msubb{}  b  =  b  =\msubb{}  a
Date html generated:
2016_05_15-PM-00_07_08
Last ObjectModification:
2015_12_26-PM-11_46_58
Theory : groups_1
Home
Index