Nuprl Lemma : omral_times_dom

g:OCMon. ∀r:CDRng. ∀ps,qs:|omral(g;r)|.  (↑(dom(ps ** qs) ⊆b (dom(ps) × dom(qs))))


Proof




Definitions occuring in Statement :  omral_times: ps ** qs omral_dom: dom(ps) omralist: omral(g;r) mset_prod: a × b bsubmset: a ⊆b b assert: b all: x:A. B[x] cdrng: CDRng ocmon: OCMon dset_of_mon: g↓set set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B guard: {T} uimplies: supposing a dset: DSet oset_of_ocmon: g↓oset cdrng: CDRng omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) grp_car: |g| iff: ⇐⇒ Q rev_implies:  Q implies:  Q prop: ocmon: OCMon abmonoid: AbMon mon: Mon so_lambda: λ2x.t[x] so_apply: x[s] omral_times: ps ** qs ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] omral_dom: dom(ps) null_mset: 0{s} oal_dom: dom(ps) mk_mset: mk_mset(as) list_ind: list_ind nil: [] it: crng: CRng rng: Rng mset_inj: mset_inj{s}(x) mset_sum: b append: as bs omon: OMon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bool: 𝔹 unit: Unit btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff infix_ap: y abdmonoid: AbDMon bor_mon: <𝔹,∨b> assert: b false: False or: P ∨ Q finite_set: FiniteSet{s} fset_map: fs-map(f, a) squash: T exists: x:A. B[x] loset: LOSet poset: POSet{i} qoset: QOSet sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) mset_prod: a × b mset_union_mon: <MSet{s},⋃,0> grp_op: * mset_map: msmap{s,s'}(f;a) monoid_hom: MonHom(M1,M2) mset_mon: mset_mon{s} true: True set_eq: =b
Lemmas referenced :  cdrng_is_abdmonoid abdmonoid_dmon ocmon_subtype_abdmonoid subtype_rel_transitivity ocmon_wf abdmonoid_wf dmon_wf set_car_wf omralist_wf dset_wf cdrng_wf mem_bsubmset dset_of_mon_wf omral_dom_wf2 omral_times_wf2 mset_prod_wf omral_dom_wf assert_wf mset_mem_wf omral_times_wf dset_of_mon_wf0 omralist_ind_a list_ind_nil_lemma map_nil_lemma nil_wf grp_car_wf rng_car_wf list_ind_cons_lemma map_cons_lemma cons_wf not_wf equal_wf rng_zero_wf before_wf oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf infix_ap_wf bool_wf grp_le_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf map_wf set_prod_wf oset_of_ocmon_wf0 assert_functionality_wrt_uiff null_mset_wf mset_for_wf bor_mon_wf set_eq_wf mset_mem_char mset_for_null_lemma assert_functionality_wrt_bimplies omral_plus_wf omral_scale_wf mset_union_wf mset_mem_functionality_wrt_bsubmset omral_plus_wf2 omral_scale_wf2 omral_plus_dom bor_wf fset_mem_union assert_of_bor fset_map_wf finite_set_wf omral_dom_scale fset_of_mset_wf mset_map_wf fset_of_mset_mem abmonoid_subtype_iabmonoid bmsexists_char_a sq_stable_from_decidable mset_sum_wf mset_inj_wf_f loset_wf decidable__assert assert_of_dset_eq bmsexists_char equal_functionality_wrt_subtype_rel2 mset_for_inj_lemma mset_union_mon_wf mset_inj_wf dist_hom_over_mset_for mset_union_bor_mon_hom monoid_hom_p_wf mset_mon_wf mset_sum_bor_mon_hom mset_for_functionality squash_wf true_wf mset_wf abmonoid_comm abdmonoid_abmonoid iabmonoid_wf mset_prod_mem bmsexists_char_a_rw mset_mem_inj_sum_lemma iff_transitivity or_wf iff_weakening_uiff assert_of_mon_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination equalityTransitivity hypothesis equalitySymmetry independent_pairFormation applyEquality instantiate independent_isectElimination sqequalRule dependent_functionElimination lambdaEquality setElimination rename because_Cache independent_functionElimination functionEquality isect_memberEquality voidElimination voidEquality productEquality independent_pairEquality cumulativity universeEquality unionElimination equalityElimination setEquality imageElimination imageMemberEquality baseClosed dependent_pairFormation inlFormation dependent_set_memberEquality functionExtensionality natural_numberEquality orFunctionality inrFormation

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}ps,qs:|omral(g;r)|.    (\muparrow{}(dom(ps  **  qs)  \msubseteq{}\msubb{}  (dom(ps)  \mtimes{}  dom(qs))))



Date html generated: 2017_10_01-AM-10_06_24
Last ObjectModification: 2017_03_03-PM-01_17_25

Theory : polynom_3


Home Index