Nuprl Lemma : mset_mem_functionality_wrt_bsubmset
∀s:DSet. ∀a:FiniteSet{s}. ∀b:MSet{s}. ∀u:|s|.  ((↑(a ⊆b b)) 
⇒ (↑(u ∈b a 
⇒b (u ∈b b))))
Proof
Definitions occuring in Statement : 
bsubmset: a ⊆b b
, 
mset_mem: mset_mem, 
finite_set: FiniteSet{s}
, 
mset: MSet{s}
, 
bimplies: p 
⇒b q
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
finite_set: FiniteSet{s}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
dset: DSet
Lemmas referenced : 
iff_weakening_uiff, 
assert_wf, 
bimplies_wf, 
mset_mem_wf, 
isect_wf, 
assert_of_bimplies, 
bsubmset_wf, 
set_car_wf, 
mset_wf, 
finite_set_wf, 
dset_wf, 
mem_bsubmset, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
isect_memberEquality, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
independent_functionElimination, 
productElimination, 
isect_memberFormation, 
introduction
Latex:
\mforall{}s:DSet.  \mforall{}a:FiniteSet\{s\}.  \mforall{}b:MSet\{s\}.  \mforall{}u:|s|.    ((\muparrow{}(a  \msubseteq{}\msubb{}  b))  {}\mRightarrow{}  (\muparrow{}(u  \mmember{}\msubb{}  a  {}\mRightarrow{}\msubb{}  (u  \mmember{}\msubb{}  b))))
Date html generated:
2016_05_16-AM-07_51_04
Last ObjectModification:
2015_12_28-PM-06_02_39
Theory : mset
Home
Index