Nuprl Lemma : mset_mem_functionality_wrt_bsubmset

s:DSet. ∀a:FiniteSet{s}. ∀b:MSet{s}. ∀u:|s|.  ((↑(a ⊆b b))  (↑(u ∈b b (u ∈b b))))


Proof




Definitions occuring in Statement :  bsubmset: a ⊆b b mset_mem: mset_mem finite_set: FiniteSet{s} mset: MSet{s} bimplies: b q assert: b all: x:A. B[x] implies:  Q dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: finite_set: FiniteSet{s} so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q dset: DSet
Lemmas referenced :  iff_weakening_uiff assert_wf bimplies_wf mset_mem_wf isect_wf assert_of_bimplies bsubmset_wf set_car_wf mset_wf finite_set_wf dset_wf mem_bsubmset assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache isect_memberEquality dependent_functionElimination hypothesisEquality hypothesis setElimination rename sqequalRule lambdaEquality independent_functionElimination productElimination isect_memberFormation introduction

Latex:
\mforall{}s:DSet.  \mforall{}a:FiniteSet\{s\}.  \mforall{}b:MSet\{s\}.  \mforall{}u:|s|.    ((\muparrow{}(a  \msubseteq{}\msubb{}  b))  {}\mRightarrow{}  (\muparrow{}(u  \mmember{}\msubb{}  a  {}\mRightarrow{}\msubb{}  (u  \mmember{}\msubb{}  b))))



Date html generated: 2016_05_16-AM-07_51_04
Last ObjectModification: 2015_12_28-PM-06_02_39

Theory : mset


Home Index