Nuprl Lemma : assert_of_bimplies

[p:𝔹]. ∀[q:𝔹 supposing ↑p].  uiff(↑(p b q);↑supposing ↑p)


Proof




Definitions occuring in Statement :  bimplies: b q assert: b bool: 𝔹 uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bool: 𝔹 unit: Unit it: btrue: tt assert: b ifthenelse: if then else fi  bimplies: b q bor: p ∨bq bnot: ¬bb bfalse: ff false: False subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] implies:  Q true: True
Lemmas referenced :  assert_witness isect_subtype_rel_trivial assert_wf bool_wf subtype_rel_self bimplies_wf isect_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation sqequalHypSubstitution independent_isectElimination hypothesis unionElimination thin equalityElimination sqequalRule voidElimination extract_by_obid isectElimination hypothesisEquality applyEquality because_Cache lambdaEquality independent_functionElimination Error :universeIsType,  isect_memberEquality equalityTransitivity equalitySymmetry natural_numberEquality Error :isectIsType,  productElimination independent_pairEquality Error :inhabitedIsType,  isectEquality

Latex:
\mforall{}[p:\mBbbB{}].  \mforall{}[q:\mBbbB{}  supposing  \muparrow{}p].    uiff(\muparrow{}(p  {}\mRightarrow{}\msubb{}  q);\muparrow{}q  supposing  \muparrow{}p)



Date html generated: 2019_06_20-AM-11_31_37
Last ObjectModification: 2018_09_26-AM-11_24_51

Theory : bool_1


Home Index