Nuprl Lemma : assert_of_bimplies
∀[p:𝔹]. ∀[q:𝔹 supposing ↑p].  uiff(↑(p 
⇒b q);↑q supposing ↑p)
Proof
Definitions occuring in Statement : 
bimplies: p 
⇒b q
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bimplies: p 
⇒b q
, 
bor: p ∨bq
, 
bnot: ¬bb
, 
bfalse: ff
, 
false: False
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
Lemmas referenced : 
assert_witness, 
isect_subtype_rel_trivial, 
assert_wf, 
bool_wf, 
subtype_rel_self, 
bimplies_wf, 
isect_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
independent_isectElimination, 
hypothesis, 
unionElimination, 
thin, 
equalityElimination, 
sqequalRule, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
lambdaEquality, 
independent_functionElimination, 
Error :universeIsType, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
Error :isectIsType, 
productElimination, 
independent_pairEquality, 
Error :inhabitedIsType, 
isectEquality
Latex:
\mforall{}[p:\mBbbB{}].  \mforall{}[q:\mBbbB{}  supposing  \muparrow{}p].    uiff(\muparrow{}(p  {}\mRightarrow{}\msubb{}  q);\muparrow{}q  supposing  \muparrow{}p)
Date html generated:
2019_06_20-AM-11_31_37
Last ObjectModification:
2018_09_26-AM-11_24_51
Theory : bool_1
Home
Index