Nuprl Lemma : mset_prod_mem

g:DMon. ∀a,b:MSet{g↓set}. ∀u:|g|.  u ∈b a × = ∃b{g↓set} v ∈ a. ∃b{g↓set} w ∈ b. (u =b (v w))


Proof




Definitions occuring in Statement :  mset_prod: a × b mset_for: mset_for mset_mem: mset_mem mset: MSet{s} bool: 𝔹 infix_ap: y all: x:A. B[x] equal: t ∈ T bor_mon: <𝔹,∨b> dset_of_mon: g↓set dmon: DMon grp_op: * grp_eq: =b grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] mset_prod: a × b member: t ∈ T uall: [x:A]. B[x] dmon: DMon mon: Mon squash: T prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B dset_of_mon: g↓set set_car: |p| pi1: fst(t) so_apply: x[s] bor_mon: <𝔹,∨b> grp_car: |g| abmonoid: AbMon true: True infix_ap: y implies:  Q uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q set_eq: =b pi2: snd(t)
Lemmas referenced :  grp_car_wf mset_wf dset_of_mon_wf dmon_wf equal_wf squash_wf true_wf bool_wf mset_mem_mon_for_union mset_for_wf mset_union_mon_wf mset_inj_wf_f infix_ap_wf set_car_wf dset_of_mon_wf0 grp_op_wf bor_mon_wf abmonoid_subtype_iabmonoid grp_eq_wf abmonoid_wf mset_for_functionality mset_mem_wf mset_inj_wf assert_wf set_eq_wf mset_mem_char mset_for_mset_inj iff_weakening_equal grp_eq_sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality dependent_functionElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache sqequalRule functionEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination independent_isectElimination productElimination

Latex:
\mforall{}g:DMon.  \mforall{}a,b:MSet\{g\mdownarrow{}set\}.  \mforall{}u:|g|.    u  \mmember{}\msubb{}  a  \mtimes{}  b  =  \mexists{}\msubb{}\{g\mdownarrow{}set\}  v  \mmember{}  a.  \mexists{}\msubb{}\{g\mdownarrow{}set\}  w  \mmember{}  b.  (u  =\msubb{}  (v  *  w))



Date html generated: 2017_10_01-AM-10_00_54
Last ObjectModification: 2017_03_03-PM-01_03_18

Theory : mset


Home Index