Nuprl Lemma : mset_mem_mon_for_union

s,s':DSet. ∀a:MSet{s}. ∀e:|s| ⟶ MSet{s'}. ∀x:|s'|.  x ∈b msFor{<MSet{s'},⋃,0>y ∈ a. e[y] = ∃b{s} y ∈ a. (x ∈b e[y])


Proof




Definitions occuring in Statement :  mset_union_mon: <MSet{s},⋃,0> mset_for: mset_for mset_mem: mset_mem mset: MSet{s} bool: 𝔹 so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] equal: t ∈ T bor_mon: <𝔹,∨b> dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet subtype_rel: A ⊆B monoid_hom: MonHom(M1,M2) mset_union_mon: <MSet{s},⋃,0> grp_car: |g| pi1: fst(t) bor_mon: <𝔹,∨b> abmonoid: AbMon mon: Mon prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  set_car_wf mset_wf dset_wf dist_hom_over_mset_for mset_union_mon_wf abmonoid_subtype_iabmonoid bor_mon_wf mset_union_bor_mon_hom mset_mem_wf bool_wf grp_car_wf abmonoid_wf monoid_hom_p_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality functionEquality dependent_functionElimination sqequalRule applyEquality dependent_set_memberEquality lambdaEquality because_Cache

Latex:
\mforall{}s,s':DSet.  \mforall{}a:MSet\{s\}.  \mforall{}e:|s|  {}\mrightarrow{}  MSet\{s'\}.  \mforall{}x:|s'|.
    x  \mmember{}\msubb{}  msFor\{<MSet\{s'\},\mcup{},0>\}  y  \mmember{}  a.  e[y]  =  \mexists{}\msubb{}\{s\}  y  \mmember{}  a.  (x  \mmember{}\msubb{}  e[y])



Date html generated: 2016_05_16-AM-07_49_57
Last ObjectModification: 2015_12_28-PM-06_01_25

Theory : mset


Home Index