Nuprl Lemma : bmsexists_char_a

s:DSet. ∀f:|s| ⟶ 𝔹. ∀a:MSet{s}.  ((↑(∃b{s} x ∈ a. f[x]))  (↓∃x:|s|. ((↑(x ∈b a)) ∧ (↑f[x]))))


Proof




Definitions occuring in Statement :  mset_for: mset_for mset_mem: mset_mem mset: MSet{s} assert: b bool: 𝔹 so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q and: P ∧ Q function: x:A ⟶ B[x] bor_mon: <𝔹,∨b> dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] dset: DSet bor_mon: <𝔹,∨b> grp_car: |g| pi1: fst(t) abmonoid: AbMon mon: Mon prop: and: P ∧ Q implies:  Q exists: x:A. B[x] sq_stable: SqStable(P) mset: MSet{s} quotient: x,y:A//B[x; y] squash: T mset_mem: mset_mem mset_for: mset_for bexists: bexists iff: ⇐⇒ Q
Lemmas referenced :  sq_stable__all assert_wf mset_for_wf bor_mon_wf set_car_wf grp_car_wf abmonoid_wf squash_wf exists_wf mset_mem_wf sq_stable__squash list_wf permr_wf equal_wf equal-wf-base mset_wf bool_wf dset_wf bexists_char bexists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis applyEquality because_Cache sqequalRule lambdaEquality functionExtensionality setElimination rename productEquality independent_functionElimination pointwiseFunctionalityForEquality functionEquality pertypeElimination productElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed

Latex:
\mforall{}s:DSet.  \mforall{}f:|s|  {}\mrightarrow{}  \mBbbB{}.  \mforall{}a:MSet\{s\}.    ((\muparrow{}(\mexists{}\msubb{}\{s\}  x  \mmember{}  a.  f[x]))  {}\mRightarrow{}  (\mdownarrow{}\mexists{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  a))  \mwedge{}  (\muparrow{}f[x]))))



Date html generated: 2017_10_01-AM-09_59_26
Last ObjectModification: 2017_03_03-PM-01_00_31

Theory : mset


Home Index