Nuprl Lemma : mset_sum_bor_mon_hom

s:DSet. ∀x:|s|.  IsMonHom{mset_mon{s},<𝔹,∨b>}(λu.(x ∈b u))


Proof




Definitions occuring in Statement :  mset_mem: mset_mem mset_mon: mset_mon{s} all: x:A. B[x] lambda: λx.A[x] bor_mon: <𝔹,∨b> monoid_hom_p: IsMonHom{M1,M2}(f) dset: DSet set_car: |p|
Definitions unfolded in proof :  monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) mset_mon: mset_mon{s} grp_car: |g| pi1: fst(t) bor_mon: <𝔹,∨b> grp_op: * pi2: snd(t) grp_id: e infix_ap: y all: x:A. B[x] member: t ∈ T top: Top and: P ∧ Q uall: [x:A]. B[x] dset: DSet uimplies: supposing a iff: ⇐⇒ Q implies:  Q rev_implies:  Q prop: subtype_rel: A ⊆B nat: gt: i > j or: P ∨ Q uiff: uiff(P;Q) squash: T true: True guard: {T} decidable: Dec(P) false: False less_than: a < b satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A ge: i ≥ 
Lemmas referenced :  bfalse_wf int_formula_prop_le_lemma intformle_wf le_wf nat_properties false_wf int_formula_prop_wf int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_or_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermAdd_wf itermVar_wf itermConstant_wf intformless_wf intformor_wf intformnot_wf intformand_wf satisfiable-full-omega-tt add-is-int-iff decidable__lt less_than_wf decidable__or iff_weakening_equal mset_count_sum true_wf squash_wf assert_of_bor or_wf iff_wf nat_wf mset_count_wf gt_wf assert_wf mset_mem_iff_count_nzero bor_wf mset_sum_wf mset_mem_wf iff_imp_equal_bool dset_wf set_car_wf mset_wf mset_mem_null_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation independent_pairFormation isect_memberFormation introduction hypothesisEquality isectElimination axiomEquality because_Cache setElimination rename independent_isectElimination addLevel productElimination impliesFunctionality independent_functionElimination orFunctionality applyEquality lambdaEquality natural_numberEquality orLevelFunctionality imageElimination equalityTransitivity equalitySymmetry universeEquality intEquality imageMemberEquality baseClosed unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion dependent_pairFormation int_eqEquality computeAll addEquality setEquality

Latex:
\mforall{}s:DSet.  \mforall{}x:|s|.    IsMonHom\{mset\_mon\{s\},<\mBbbB{},\mvee{}\msubb{}>\}(\mlambda{}u.(x  \mmember{}\msubb{}  u))



Date html generated: 2016_05_16-AM-07_49_54
Last ObjectModification: 2016_01_16-PM-11_39_51

Theory : mset


Home Index