Nuprl Lemma : mset_sum_bor_mon_hom
∀s:DSet. ∀x:|s|.  IsMonHom{mset_mon{s},<𝔹,∨b>}(λu.(x ∈b u))
Proof
Definitions occuring in Statement : 
mset_mem: mset_mem, 
mset_mon: mset_mon{s}
, 
all: ∀x:A. B[x]
, 
lambda: λx.A[x]
, 
bor_mon: <𝔹,∨b>
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
mset_mon: mset_mon{s}
, 
grp_car: |g|
, 
pi1: fst(t)
, 
bor_mon: <𝔹,∨b>
, 
grp_op: *
, 
pi2: snd(t)
, 
grp_id: e
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
gt: i > j
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
decidable: Dec(P)
, 
false: False
, 
less_than: a < b
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
ge: i ≥ j 
Lemmas referenced : 
bfalse_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
le_wf, 
nat_properties, 
false_wf, 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_or_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformor_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
add-is-int-iff, 
decidable__lt, 
less_than_wf, 
decidable__or, 
iff_weakening_equal, 
mset_count_sum, 
true_wf, 
squash_wf, 
assert_of_bor, 
or_wf, 
iff_wf, 
nat_wf, 
mset_count_wf, 
gt_wf, 
assert_wf, 
mset_mem_iff_count_nzero, 
bor_wf, 
mset_sum_wf, 
mset_mem_wf, 
iff_imp_equal_bool, 
dset_wf, 
set_car_wf, 
mset_wf, 
mset_mem_null_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
hypothesisEquality, 
isectElimination, 
axiomEquality, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
addLevel, 
productElimination, 
impliesFunctionality, 
independent_functionElimination, 
orFunctionality, 
applyEquality, 
lambdaEquality, 
natural_numberEquality, 
orLevelFunctionality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
intEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
addEquality, 
setEquality
Latex:
\mforall{}s:DSet.  \mforall{}x:|s|.    IsMonHom\{mset\_mon\{s\},<\mBbbB{},\mvee{}\msubb{}>\}(\mlambda{}u.(x  \mmember{}\msubb{}  u))
Date html generated:
2016_05_16-AM-07_49_54
Last ObjectModification:
2016_01_16-PM-11_39_51
Theory : mset
Home
Index