Nuprl Lemma : mset_count_sum

s:DSet. ∀as,bs:MSet{s}. ∀c:|s|.  ((c #∈ (as bs)) ((c #∈ as) (c #∈ bs)) ∈ ℤ)


Proof




Definitions occuring in Statement :  mset_sum: b mset_count: #∈ a mset: MSet{s} all: x:A. B[x] add: m int: equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet mset: MSet{s} quotient: x,y:A//B[x; y] and: P ∧ Q implies:  Q mset_count: #∈ a mset_sum: b prop: squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  set_car_wf mset_wf dset_wf list_wf permr_wf equal_wf equal-wf-base squash_wf true_wf count_functionality append_wf append_functionality_wrt_permr count_wf iff_weakening_equal count_append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality dependent_functionElimination pointwiseFunctionalityForEquality intEquality sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry because_Cache independent_functionElimination productEquality applyEquality lambdaEquality imageElimination universeEquality addEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:MSet\{s\}.  \mforall{}c:|s|.    ((c  \#\mmember{}  (as  +  bs))  =  ((c  \#\mmember{}  as)  +  (c  \#\mmember{}  bs)))



Date html generated: 2017_10_01-AM-09_59_51
Last ObjectModification: 2017_03_03-PM-01_00_50

Theory : mset


Home Index