Nuprl Lemma : omral_dom_scale

g:OCMon. ∀r:CDRng. ∀k:|g|. ∀v:|r|. ∀ps:|omral(g;r)|.  (↑(dom(<k,v>ps) ⊆b fs-map(λk'.(k' k), dom(ps))))


Proof




Definitions occuring in Statement :  omral_scale: <k,v>ps omral_dom: dom(ps) omralist: omral(g;r) bsubmset: a ⊆b b fset_map: fs-map(f, a) assert: b infix_ap: y all: x:A. B[x] lambda: λx.A[x] cdrng: CDRng rng_car: |r| oset_of_ocmon: g↓oset ocmon: OCMon grp_op: * grp_car: |g| set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B ocmon: OCMon omon: OMon so_lambda: λ2x.t[x] prop: and: P ∧ Q abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) cdrng: CDRng omralist: omral(g;r) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t add_grp_of_rng: r↓+gp grp_id: e pi2: snd(t) grp_car: |g| dset: DSet finite_set: FiniteSet{s} iff: ⇐⇒ Q rev_implies:  Q crng: CRng rng: Rng decidable: Dec(P) or: P ∨ Q not: ¬A false: False fset_map: fs-map(f, a) guard: {T} dmon: DMon grp: Group{i} rng_car: |r| grp_eq: =b rng_eq: =b omral_dom: dom(ps) oal_dom: dom(ps) true: True top: Top squash: T compose: g mk_mset: mk_mset(as) mset_mem: mset_mem mem: a ∈b as bexists: bexists rev_uimplies: rev_uimplies(P;Q) set_eq: =b ball: ball loset: LOSet poset: POSet{i} qoset: QOSet band_mon: <𝔹,∧b>
Lemmas referenced :  mem_bsubmset oset_of_ocmon_wf subtype_rel_sets abmonoid_wf ulinorder_wf grp_car_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf grp_eq_wf eqtt_to_assert cancel_wf grp_op_wf uall_wf monot_wf omral_dom_wf2 omral_scale_wf2 fset_map_wf set_car_wf oset_of_ocmon_wf0 omral_dom_wf omralist_wf dset_wf finite_set_wf mset_mem_wf omral_scale_wf rng_car_wf cdrng_wf ocmon_wf decidable__assert assert_functionality_wrt_uiff fset_of_mset_wf mset_map_wf fset_of_mset_mem cdrng_properties add_grp_of_rng_wf_a grp_wf eqfun_p_wf mk_mset_wf map_wf set_prod_wf dset_of_mon_wf map_map squash_wf true_wf mset_wf mset_map_char uiff_transitivity not_wf bexists_wf set_eq_wf bnot_wf ball_wf assert_of_bnot bnot_thru_exists omral_scale_dom_pred mon_for_wf band_mon_wf loset_wf mon_for_map abmonoid_subtype_iabmonoid list_wf abmonoid_comm abdmonoid_abmonoid ocmon_subtype_abdmonoid subtype_rel_transitivity abdmonoid_wf iabmonoid_wf pi1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality applyEquality sqequalRule instantiate hypothesis because_Cache lambdaEquality productEquality setElimination rename cumulativity universeEquality functionEquality unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination setEquality independent_pairFormation voidElimination promote_hyp dependent_set_memberEquality natural_numberEquality isect_memberEquality voidEquality imageElimination imageMemberEquality baseClosed independent_pairEquality

Latex:
\mforall{}g:OCMon.  \mforall{}r:CDRng.  \mforall{}k:|g|.  \mforall{}v:|r|.  \mforall{}ps:|omral(g;r)|.
    (\muparrow{}(dom(<k,v>*  ps)  \msubseteq{}\msubb{}  fs-map(\mlambda{}k'.(k'  *  k),  dom(ps))))



Date html generated: 2017_10_01-AM-10_05_47
Last ObjectModification: 2017_03_03-PM-01_16_50

Theory : polynom_3


Home Index