Nuprl Lemma : mset_map_char

s,s':DSet. ∀f:|s| ⟶ |s'|. ∀as:|s| List.  (msmap{s,s'}(f;mk_mset(as)) mk_mset(map(f;as)) ∈ MSet{s'})


Proof




Definitions occuring in Statement :  mset_map: msmap{s,s'}(f;a) mk_mset: mk_mset(as) mset: MSet{s} map: map(f;as) list: List all: x:A. B[x] function: x:A ⟶ B[x] equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T dset: DSet so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q top: Top prop: mk_mset: mk_mset(as) null_mset: 0{s} mset_map: msmap{s,s'}(f;a) mset_mon: mset_mon{s} grp_id: e pi2: snd(t) pi1: fst(t) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q grp_op: * infix_ap: y
Lemmas referenced :  list_induction set_car_wf equal_wf mset_wf mset_map_wf mk_mset_wf map_wf list_wf map_nil_lemma map_cons_lemma dset_wf mset_for_null_lemma null_mset_wf squash_wf true_wf mk_mset_cons iff_weakening_equal mset_for_inj_lemma mset_sum_wf mset_inj_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination setElimination rename because_Cache hypothesis sqequalRule lambdaEquality dependent_functionElimination hypothesisEquality functionExtensionality applyEquality independent_functionElimination isect_memberEquality voidElimination voidEquality functionEquality imageElimination equalityTransitivity equalitySymmetry universeEquality equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination

Latex:
\mforall{}s,s':DSet.  \mforall{}f:|s|  {}\mrightarrow{}  |s'|.  \mforall{}as:|s|  List.    (msmap\{s,s'\}(f;mk\_mset(as))  =  mk\_mset(map(f;as)))



Date html generated: 2017_10_01-AM-09_59_42
Last ObjectModification: 2017_03_03-PM-01_00_52

Theory : mset


Home Index