Nuprl Lemma : mset_map_char
∀s,s':DSet. ∀f:|s| ⟶ |s'|. ∀as:|s| List.  (msmap{s,s'}(f;mk_mset(as)) = mk_mset(map(f;as)) ∈ MSet{s'})
Proof
Definitions occuring in Statement : 
mset_map: msmap{s,s'}(f;a), 
mk_mset: mk_mset(as), 
mset: MSet{s}, 
map: map(f;as), 
list: T List, 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x], 
equal: s = t ∈ T, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
dset: DSet, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
top: Top, 
prop: ℙ, 
mk_mset: mk_mset(as), 
null_mset: 0{s}, 
mset_map: msmap{s,s'}(f;a), 
mset_mon: mset_mon{s}, 
grp_id: e, 
pi2: snd(t), 
pi1: fst(t), 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
grp_op: *, 
infix_ap: x f y
Lemmas referenced : 
list_induction, 
set_car_wf, 
equal_wf, 
mset_wf, 
mset_map_wf, 
mk_mset_wf, 
map_wf, 
list_wf, 
map_nil_lemma, 
map_cons_lemma, 
dset_wf, 
mset_for_null_lemma, 
null_mset_wf, 
squash_wf, 
true_wf, 
mk_mset_cons, 
iff_weakening_equal, 
mset_for_inj_lemma, 
mset_sum_wf, 
mset_inj_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}s,s':DSet.  \mforall{}f:|s|  {}\mrightarrow{}  |s'|.  \mforall{}as:|s|  List.    (msmap\{s,s'\}(f;mk\_mset(as))  =  mk\_mset(map(f;as)))
Date html generated:
2017_10_01-AM-09_59_42
Last ObjectModification:
2017_03_03-PM-01_00_52
Theory : mset
Home
Index