Nuprl Lemma : fset_of_mset_mem

s:DSet. ∀a:MSet{s}. ∀c:|s|.  c ∈b fset_of_mset(s;a) c ∈b a


Proof




Definitions occuring in Statement :  fset_of_mset: fset_of_mset(s;a) mset_mem: mset_mem mset: MSet{s} bool: 𝔹 all: x:A. B[x] equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] so_apply: x[s] implies:  Q guard: {T} dset: DSet fset_of_mset: fset_of_mset(s;a) top: Top mset_union_mon: <MSet{s},⋃,0> grp_id: e pi2: snd(t) pi1: fst(t) squash: T prop: subtype_rel: A ⊆B grp_car: |g| abmonoid: AbMon mon: Mon true: True uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q infix_ap: y bor_mon: <𝔹,∨b> grp_op: *
Lemmas referenced :  mset_ind_a equal_wf bool_wf mset_mem_wf fset_of_mset_wf mset_wf set_car_wf dset_wf sq_stable__equal mset_for_null_lemma mset_mem_null_lemma bfalse_wf all_wf squash_wf true_wf mset_mem_char mset_for_wf mset_union_mon_wf abmonoid_subtype_iabmonoid mset_inj_wf grp_car_wf abmonoid_wf iff_weakening_equal mset_for_functionality bor_mon_wf set_eq_wf mset_for_mset_inj infix_ap_wf assert_wf mset_sum_wf grp_op_wf mset_for_mset_sum fset_mem_union bor_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality sqequalRule lambdaEquality isectElimination hypothesis independent_functionElimination setElimination rename isect_memberEquality voidElimination voidEquality applyEquality imageElimination equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination equalityUniverse levelHypothesis

Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.  \mforall{}c:|s|.    c  \mmember{}\msubb{}  fset\_of\_mset(s;a)  =  c  \mmember{}\msubb{}  a



Date html generated: 2017_10_01-AM-10_00_17
Last ObjectModification: 2017_03_03-PM-01_01_31

Theory : mset


Home Index