Nuprl Lemma : fset_of_mset_mem
∀s:DSet. ∀a:MSet{s}. ∀c:|s|.  c ∈b fset_of_mset(s;a) = c ∈b a
Proof
Definitions occuring in Statement : 
fset_of_mset: fset_of_mset(s;a), 
mset_mem: mset_mem, 
mset: MSet{s}, 
bool: 𝔹, 
all: ∀x:A. B[x], 
equal: s = t ∈ T, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
guard: {T}, 
dset: DSet, 
fset_of_mset: fset_of_mset(s;a), 
top: Top, 
mset_union_mon: <MSet{s},⋃,0>, 
grp_id: e, 
pi2: snd(t), 
pi1: fst(t), 
squash: ↓T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
grp_car: |g|, 
abmonoid: AbMon, 
mon: Mon, 
true: True, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
infix_ap: x f y, 
bor_mon: <𝔹,∨b>, 
grp_op: *
Lemmas referenced : 
mset_ind_a, 
equal_wf, 
bool_wf, 
mset_mem_wf, 
fset_of_mset_wf, 
mset_wf, 
set_car_wf, 
dset_wf, 
sq_stable__equal, 
mset_for_null_lemma, 
mset_mem_null_lemma, 
bfalse_wf, 
all_wf, 
squash_wf, 
true_wf, 
mset_mem_char, 
mset_for_wf, 
mset_union_mon_wf, 
abmonoid_subtype_iabmonoid, 
mset_inj_wf, 
grp_car_wf, 
abmonoid_wf, 
iff_weakening_equal, 
mset_for_functionality, 
bor_mon_wf, 
set_eq_wf, 
mset_for_mset_inj, 
infix_ap_wf, 
assert_wf, 
mset_sum_wf, 
grp_op_wf, 
mset_for_mset_sum, 
fset_mem_union, 
bor_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
setElimination, 
rename, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.  \mforall{}c:|s|.    c  \mmember{}\msubb{}  fset\_of\_mset(s;a)  =  c  \mmember{}\msubb{}  a
Date html generated:
2017_10_01-AM-10_00_17
Last ObjectModification:
2017_03_03-PM-01_01_31
Theory : mset
Home
Index