Nuprl Lemma : mon_for_map
∀g:IAbMonoid. ∀A,B:Type. ∀e:A ⟶ B. ∀f:B ⟶ |g|. ∀as:A List.
  ((For{g} y ∈ map(e;as). f[y]) = (For{g} x ∈ as. f[e x]) ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_for: For{g} x ∈ as. f[x]
, 
map: map(f;as)
, 
list: T List
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
iabmonoid: IAbMonoid
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
infix_ap: x f y
, 
prop: ℙ
Lemmas referenced : 
list_induction, 
equal_wf, 
grp_car_wf, 
mon_for_wf, 
map_wf, 
list_wf, 
map_nil_lemma, 
mon_for_nil_lemma, 
grp_id_wf, 
map_cons_lemma, 
mon_for_cons_lemma, 
grp_op_wf, 
iabmonoid_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
hypothesis, 
dependent_functionElimination, 
applyEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}g:IAbMonoid.  \mforall{}A,B:Type.  \mforall{}e:A  {}\mrightarrow{}  B.  \mforall{}f:B  {}\mrightarrow{}  |g|.  \mforall{}as:A  List.
    ((For\{g\}  y  \mmember{}  map(e;as).  f[y])  =  (For\{g\}  x  \mmember{}  as.  f[e  x]))
Date html generated:
2016_05_16-AM-07_36_40
Last ObjectModification:
2015_12_28-PM-05_45_35
Theory : list_2
Home
Index