Nuprl Lemma : mon_for_map

g:IAbMonoid. ∀A,B:Type. ∀e:A ⟶ B. ∀f:B ⟶ |g|. ∀as:A List.
  ((For{g} y ∈ map(e;as). f[y]) (For{g} x ∈ as. f[e x]) ∈ |g|)


Proof




Definitions occuring in Statement :  mon_for: For{g} x ∈ as. f[x] map: map(f;as) list: List so_apply: x[s] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] iabmonoid: IAbMonoid imon: IMonoid so_apply: x[s] implies:  Q top: Top infix_ap: y prop:
Lemmas referenced :  list_induction equal_wf grp_car_wf mon_for_wf map_wf list_wf map_nil_lemma mon_for_nil_lemma grp_id_wf map_cons_lemma mon_for_cons_lemma grp_op_wf iabmonoid_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality setElimination rename hypothesis dependent_functionElimination applyEquality independent_functionElimination isect_memberEquality voidElimination voidEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}g:IAbMonoid.  \mforall{}A,B:Type.  \mforall{}e:A  {}\mrightarrow{}  B.  \mforall{}f:B  {}\mrightarrow{}  |g|.  \mforall{}as:A  List.
    ((For\{g\}  y  \mmember{}  map(e;as).  f[y])  =  (For\{g\}  x  \mmember{}  as.  f[e  x]))



Date html generated: 2016_05_16-AM-07_36_40
Last ObjectModification: 2015_12_28-PM-05_45_35

Theory : list_2


Home Index