Nuprl Lemma : Accum-loc-class-es-sv1
∀[Info,A,B:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(A)]. ∀[init:Id ─→ bag(B)]. ∀[f:Id ─→ A ─→ B ─→ B].
  (es-sv-class(es;Accum-loc-class(f;init;X))) supposing ((∀l:Id. (#(init l) ≤ 1)) and es-sv-class(es;X))
Proof
Definitions occuring in Statement : 
Accum-loc-class: Accum-loc-class(f;init;X)
, 
es-sv-class: es-sv-class(es;X)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
Id: Id
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
natural_number: $n
, 
universe: Type
, 
bag-size: #(bs)
, 
bag: bag(T)
Lemmas : 
rec-combined-loc-class-opt-1-es-sv, 
subtype_rel_dep_function, 
bag_wf, 
top_wf, 
subtype_rel_bag, 
less_than_wf, 
bag-size_wf, 
Accum-loc-class_wf, 
eclass_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
nat_wf, 
all_wf, 
Id_wf, 
le_wf, 
es-sv-class_wf
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(A)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].
    (es-sv-class(es;Accum-loc-class(f;init;X)))  supposing 
          ((\mforall{}l:Id.  (\#(init  l)  \mleq{}  1))  and 
          es-sv-class(es;X))
Date html generated:
2015_07_22-PM-00_18_00
Last ObjectModification:
2015_01_28-AM-10_42_44
Home
Index