Nuprl Lemma : Prior-Accum-class-single-val0
∀[Info,A,B:Type]. ∀[es:EO+(Info)]. ∀[f:A ─→ B ─→ B]. ∀[X:EClass(A)]. ∀[init:Id ─→ bag(B)]. ∀[e:E]. ∀[v1,v2:B].
  (v1 = v2 ∈ B) supposing 
     (v1 ∈ Prior(Accum-class(f;init;X))?init(e) and 
     v2 ∈ Prior(Accum-class(f;init;X))?init(e) and 
     single-valued-bag(init loc(e);B) and 
     single-valued-classrel(es;X;A))
Proof
Definitions occuring in Statement : 
Accum-class: Accum-class(f;init;X)
, 
primed-class-opt: Prior(X)?b
, 
single-valued-classrel: single-valued-classrel(es;X;T)
, 
classrel: v ∈ X(e)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-loc: loc(e)
, 
es-E: E
, 
Id: Id
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
single-valued-bag: single-valued-bag(b;T)
, 
bag: bag(T)
Lemmas : 
primed-class-opt-classrel, 
es-locl-trichotomy, 
classrel_wf, 
squash_wf, 
true_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
eclass_wf, 
iff_weakening_equal, 
Accum-class-single-val0, 
and_wf, 
equal_wf, 
Id_wf, 
bag_wf, 
single-valued-bag_wf, 
primed-class-opt_wf, 
Accum-class_wf, 
es-loc_wf, 
single-valued-classrel_wf
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[e:E].
\mforall{}[v1,v2:B].
    (v1  =  v2)  supposing 
          (v1  \mmember{}  Prior(Accum-class(f;init;X))?init(e)  and 
          v2  \mmember{}  Prior(Accum-class(f;init;X))?init(e)  and 
          single-valued-bag(init  loc(e);B)  and 
          single-valued-classrel(es;X;A))
Date html generated:
2015_07_22-PM-00_17_45
Last ObjectModification:
2015_02_04-PM-04_39_20
Home
Index