Nuprl Lemma : prior-classrel-p-local-pred
∀[T,Info:Type]. ∀[X:EClass(T)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:T].
  uiff(v ∈ Prior(X)(e);↓∃e':E. ((es-p-local-pred(es;λe'.(↓∃w:T. w ∈ X(e'))) e e') ∧ v ∈ X(e')))
Proof
Definitions occuring in Statement : 
primed-class: Prior(X)
, 
classrel: v ∈ X(e)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-p-local-pred: es-p-local-pred(es;P)
, 
es-E: E
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
universe: Type
Lemmas : 
prior-classrel, 
es-p-local-pred_wf, 
event-ordering+_subtype, 
squash_wf, 
exists_wf, 
classrel_wf, 
es-E_wf, 
primed-class_wf, 
top_wf, 
es-local-pred_wf, 
lt_int_wf, 
bag-size_wf, 
subtype_rel_sum, 
sq_exists_wf, 
es-locl_wf, 
assert_wf, 
nat_wf, 
all_wf, 
not_wf, 
or_wf, 
es-local-pred-iff-es-p-local-pred
Latex:
\mforall{}[T,Info:Type].  \mforall{}[X:EClass(T)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:T].
    uiff(v  \mmember{}  Prior(X)(e);\mdownarrow{}\mexists{}e':E.  ((es-p-local-pred(es;\mlambda{}e'.(\mdownarrow{}\mexists{}w:T.  w  \mmember{}  X(e')))  e  e')  \mwedge{}  v  \mmember{}  X(e')))
Date html generated:
2015_07_22-PM-00_14_54
Last ObjectModification:
2015_01_28-AM-10_46_32
Home
Index