Nuprl Lemma : simple-loc-comb-2-concat-loc-bounded3

[Info,A,B,C:Type]. ∀[f:Id ─→ A ─→ B ─→ bag(C)]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
  (LocBounded(B;Y)  LocBounded(C;f@Loc (Loc,X, Y)))


Proof




Definitions occuring in Statement :  concat-lifting-loc-2: f@Loc simple-loc-comb-2: (Loc,X, Y) loc-bounded-class: LocBounded(T;X) eclass: EClass(A[eo; e]) Id: Id uall: [x:A]. B[x] implies:  Q function: x:A ─→ B[x] universe: Type bag: bag(T)
Lemmas :  simple-loc-comb-2-concat-classrel sq_stable__bag-member es-loc_wf classrel_wf simple-loc-comb-2_wf concat-lifting-loc-2_wf es-E_wf event-ordering+_subtype all_wf bag-member_wf loc-bounded-class_wf eclass_wf event-ordering+_wf Id_wf bag_wf

Latex:
\mforall{}[Info,A,B,C:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  bag(C)].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    (LocBounded(B;Y)  {}\mRightarrow{}  LocBounded(C;f@Loc  o  (Loc,X,  Y)))



Date html generated: 2015_07_22-PM-00_11_08
Last ObjectModification: 2015_01_28-AM-11_40_43

Home Index