Step
*
1
1
1
of Lemma
simple-loc-comb1-classrel
1. Info : Type
2. B : Type
3. C : Type
4. f : Id ─→ B ─→ C
5. X : EClass(B)
6. es : EO+(Info)
7. e : E
8. v : C
9. x : Id@i
10. v1 : C@i
11. bs : k:ℕ1 ─→ bag([B][k])@i
12. v1 ↓∈ lifting-loc-gen-rev(1;bs;x;f)
⇐⇒ ↓∃lst:k:ℕ1 ─→ ((λn.[B][n]) k). ((∀[k:ℕ1]. lst k ↓∈ bs k) ∧ ((uncurry-rev(1;f x) lst) = v1 ∈ C))
⊢ v1 ↓∈ (λl,w. lifting1-loc(f;l;w 0)) x bs
⇐⇒ ↓∃vs:k:ℕ1 ─→ [B][k]. ((∀k:ℕ1. vs k ↓∈ bs k) ∧ (v1 = ((λx,vs. (f x (vs 0))) x vs) ∈ C))
BY
{ Reduce 0 }
1
1. Info : Type
2. B : Type
3. C : Type
4. f : Id ─→ B ─→ C
5. X : EClass(B)
6. es : EO+(Info)
7. e : E
8. v : C
9. x : Id@i
10. v1 : C@i
11. bs : k:ℕ1 ─→ bag([B][k])@i
12. v1 ↓∈ lifting-loc-gen-rev(1;bs;x;f)
⇐⇒ ↓∃lst:k:ℕ1 ─→ ((λn.[B][n]) k). ((∀[k:ℕ1]. lst k ↓∈ bs k) ∧ ((uncurry-rev(1;f x) lst) = v1 ∈ C))
⊢ v1 ↓∈ lifting1-loc(f;x;bs 0)
⇐⇒ ↓∃vs:k:ℕ1 ─→ [B][k]. ((∀k:ℕ1. vs k ↓∈ bs k) ∧ (v1 = (f x (vs 0)) ∈ C))
Latex:
Latex:
1. Info : Type
2. B : Type
3. C : Type
4. f : Id {}\mrightarrow{} B {}\mrightarrow{} C
5. X : EClass(B)
6. es : EO+(Info)
7. e : E
8. v : C
9. x : Id@i
10. v1 : C@i
11. bs : k:\mBbbN{}1 {}\mrightarrow{} bag([B][k])@i
12. v1 \mdownarrow{}\mmember{} lifting-loc-gen-rev(1;bs;x;f)
\mLeftarrow{}{}\mRightarrow{} \mdownarrow{}\mexists{}lst:k:\mBbbN{}1 {}\mrightarrow{} ((\mlambda{}n.[B][n]) k). ((\mforall{}[k:\mBbbN{}1]. lst k \mdownarrow{}\mmember{} bs k) \mwedge{} ((uncurry-rev(1;f x) lst) = v1))
\mvdash{} v1 \mdownarrow{}\mmember{} (\mlambda{}l,w. lifting1-loc(f;l;w 0)) x bs
\mLeftarrow{}{}\mRightarrow{} \mdownarrow{}\mexists{}vs:k:\mBbbN{}1 {}\mrightarrow{} [B][k]. ((\mforall{}k:\mBbbN{}1. vs k \mdownarrow{}\mmember{} bs k) \mwedge{} (v1 = ((\mlambda{}x,vs. (f x (vs 0))) x vs)))
By
Latex:
Reduce 0
Home
Index