Nuprl Lemma : simple-loc-comb1-classrel

[Info,B,C:Type]. ∀[f:Id ─→ B ─→ C]. ∀[X:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
  uiff(v ∈ simple-loc-comb1(l,a.lifting1-loc(f;l;a);X)(e);↓∃b:B. (b ∈ X(e) ∧ (v (f loc(e) b) ∈ C)))


Proof




Definitions occuring in Statement :  lifting1-loc: lifting1-loc(f;loc;b) simple-loc-comb1: simple-loc-comb1(l,b.F[l; b];X) classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) es-E: E Id: Id uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T
Definitions :  uncurry-rev: uncurry-rev(n;f) uncurry-gen: uncurry-gen(n) ifthenelse: if then else fi  eq_int: (i =z j) bfalse: ff btrue: tt
Lemmas :  classrel_wf simple-loc-comb1_wf lifting1-loc_wf bag_wf Id_wf squash_wf exists_wf es-loc_wf event-ordering+_subtype es-E_wf event-ordering+_wf eclass_wf simple-loc-comb-classrel false_wf le_wf select_wf cons_wf nil_wf sq_stable__le length_wf length_nil non_neg_length length_wf_nil length_cons length_wf_nat int_seg_wf decidable__equal_int subtype_base_sq int_subtype_base lelt_wf lifting-loc-member-simple subtype_rel_dep_function funtype_wf primrec1_lemma subtype_rel_self bag-member_wf all_wf lifting-loc-gen-rev_wf uall_wf iff_wf le-add-cancel2 add-associates add_functionality_wrt_le zero-add minus-zero minus-add add-commutes condition-implies-le less-iff-le not-le-2 decidable__le select-cons-hd subtype_rel-equal es-interface-subtype_rel2 simple-loc-comb_wf

Latex:
\mforall{}[Info,B,C:Type].  \mforall{}[f:Id  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[X:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:C].
    uiff(v  \mmember{}  simple-loc-comb1(l,a.lifting1-loc(f;l;a);X)(e);\mdownarrow{}\mexists{}b:B.  (b  \mmember{}  X(e)  \mwedge{}  (v  =  (f  loc(e)  b))))



Date html generated: 2015_07_22-PM-00_08_38
Last ObjectModification: 2015_02_02-PM-06_56_39

Home Index