Nuprl Lemma : lifting-loc-member-simple

[B:Type]. ∀[n:ℕ]. ∀[A:ℕn ─→ Type]. ∀[bags:k:ℕn ─→ bag(A k)]. ∀[f:Id ─→ funtype(n;A;B)]. ∀[b:B]. ∀[l:Id].
  (b ↓∈ lifting-loc-gen-rev(n;bags;l;f)
  ⇐⇒ ↓∃lst:k:ℕn ─→ (A k). ((∀[k:ℕn]. lst k ↓∈ bags k) ∧ ((uncurry-rev(n;f l) lst) b ∈ B)))


Proof




Definitions occuring in Statement :  lifting-loc-gen-rev: lifting-loc-gen-rev(n;bags;loc;f) Id: Id int_seg: {i..j-} nat: uall: [x:A]. B[x] exists: x:A. B[x] iff: ⇐⇒ Q squash: T and: P ∧ Q apply: a function: x:A ─→ B[x] natural_number: $n universe: Type equal: t ∈ T uncurry-rev: uncurry-rev(n;f) bag-member: x ↓∈ bs bag: bag(T) funtype: funtype(n;A;T)
Lemmas :  lifting-member-simple bag-member_wf lifting-loc-gen-rev_wf squash_wf exists_wf int_seg_wf uall_wf uncurry-rev_wf Id_wf funtype_wf bag_wf nat_wf

Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].  \mforall{}[f:Id  {}\mrightarrow{}  funtype(n;A;B)].  \mforall{}[b:B].
\mforall{}[l:Id].
    (b  \mdownarrow{}\mmember{}  lifting-loc-gen-rev(n;bags;l;f)
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}lst:k:\mBbbN{}n  {}\mrightarrow{}  (A  k).  ((\mforall{}[k:\mBbbN{}n].  lst  k  \mdownarrow{}\mmember{}  bags  k)  \mwedge{}  ((uncurry-rev(n;f  l)  lst)  =  b)))



Date html generated: 2015_07_22-PM-00_07_58
Last ObjectModification: 2015_01_28-AM-11_42_09

Home Index