Nuprl Lemma : lifting-member-simple

[B:Type]. ∀[n:ℕ]. ∀[A:ℕn ⟶ Type]. ∀[bags:k:ℕn ⟶ bag(A k)]. ∀[f:funtype(n;A;B)]. ∀[b:B].
  (b ↓∈ lifting-gen-rev(n;f;bags)
  ⇐⇒ ↓∃lst:k:ℕn ⟶ (A k). ((∀[k:ℕn]. lst k ↓∈ bags k) ∧ ((uncurry-rev(n;f) lst) b ∈ B)))


Proof




Definitions occuring in Statement :  uncurry-rev: uncurry-rev(n;f) lifting-gen-rev: lifting-gen-rev(n;f;bags) bag-member: x ↓∈ bs bag: bag(T) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] exists: x:A. B[x] iff: ⇐⇒ Q squash: T and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  lifting-gen-rev: lifting-gen-rev(n;f;bags) uncurry-rev: uncurry-rev(n;f) uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B uiff: uiff(P;Q) subtract: m less_than: a < b squash: T true: True so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q bag-member: x ↓∈ bs
Lemmas referenced :  lifting-member false_wf nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf subtype_rel-equal funtype_wf int_seg_wf subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma le_wf add-member-int_seg2 decidable__equal_int intformeq_wf int_formula_prop_eq_lemma add-zero bag-member_wf lifting-gen-rev_wf squash_wf exists_wf uall_wf equal_wf uncurry-rev_wf bag_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation sqequalRule lambdaFormation hypothesis setElimination rename dependent_functionElimination addEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality cumulativity functionExtensionality productElimination imageElimination imageMemberEquality baseClosed functionEquality productEquality universeEquality isect_memberFormation independent_pairEquality

Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].  \mforall{}[f:funtype(n;A;B)].  \mforall{}[b:B].
    (b  \mdownarrow{}\mmember{}  lifting-gen-rev(n;f;bags)
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}lst:k:\mBbbN{}n  {}\mrightarrow{}  (A  k).  ((\mforall{}[k:\mBbbN{}n].  lst  k  \mdownarrow{}\mmember{}  bags  k)  \mwedge{}  ((uncurry-rev(n;f)  lst)  =  b)))



Date html generated: 2017_10_01-AM-09_04_21
Last ObjectModification: 2017_07_26-PM-04_44_48

Theory : bags


Home Index