Nuprl Lemma : lifting-member
∀[B:Type]. ∀[n:ℕ]. ∀[m:ℕn + 1]. ∀[A:ℕn ⟶ Type]. ∀[bags:k:ℕn ⟶ bag(A k)]. ∀[f:funtype(n - m;λx.(A (x + m));B)]. ∀[b:B].
  (b ↓∈ lifting-gen-list-rev(n;bags) m f
  ⇐⇒ ↓∃lst:k:{m..n-} ⟶ (A k). ((∀[k:{m..n-}]. lst k ↓∈ bags k) ∧ ((uncurry-gen(n) m (λx.f) lst) = b ∈ B)))
Proof
Definitions occuring in Statement : 
uncurry-gen: uncurry-gen(n), 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags), 
bag-member: x ↓∈ bs, 
bag: bag(T), 
funtype: funtype(n;A;T), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
squash: ↓T, 
and: P ∧ Q, 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
nat: ℕ, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
guard: {T}, 
iff: P ⇐⇒ Q, 
squash: ↓T, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
bag-member: x ↓∈ bs, 
subtype_rel: A ⊆r B, 
sq_type: SQType(T), 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags), 
true: True, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
funtype: funtype(n;A;T), 
lt_int: i <z j, 
subtract: n - m, 
uncurry-gen: uncurry-gen(n), 
cand: A c∧ B, 
nequal: a ≠ b ∈ T , 
bfalse: ff, 
assert: ↑b, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bnot: ¬bb, 
gt: i > j, 
sq_stable: SqStable(P), 
le: A ≤ B, 
less_than': less_than'(a;b), 
istype: istype(T)
Lemmas referenced : 
uncurry-gen_wf2, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
le_wf, 
less_than_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
intformand_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
bag-member_wf, 
lifting-gen-list-rev_wf, 
squash_wf, 
exists_wf, 
uall_wf, 
equal_wf, 
istype-universe, 
funtype_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
add-member-int_seg1, 
bag_wf, 
nat_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
ge_wf, 
add-member-int_seg2, 
subtract-1-ge-0, 
bool_wf, 
bool_subtype_base, 
true_wf, 
eq_int_eq_true, 
btrue_wf, 
subtype_rel_self, 
iff_weakening_equal, 
primrec-unroll, 
bag-member-single, 
eq_int_eq_false, 
bfalse_wf, 
bag-member-combine, 
iff_imp_equal_bool, 
lt_int_wf, 
iff_functionality_wrt_iff, 
assert_wf, 
false_wf, 
iff_weakening_uiff, 
assert_of_lt_int, 
subtype_rel-equal, 
primrec_wf, 
add-associates, 
minus-one-mul, 
add-swap, 
add-mul-special, 
add-commutes, 
zero-mul, 
add-zero, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
neg_assert_of_eq_int, 
bool_cases, 
decidable__or, 
equal-wf-base, 
intformor_wf, 
int_formula_prop_or_lemma, 
btrue_neq_bfalse, 
apply_uncurry, 
minus-add, 
minus-minus, 
one-mul, 
apply_larger_list, 
sq_stable__bag-member, 
subtype_rel_dep_function, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-one-mul-top, 
zero-add, 
le-add-cancel, 
le_reflexive
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
productElimination, 
independent_pairFormation, 
hypothesis, 
dependent_functionElimination, 
addEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
universeIsType, 
productIsType, 
functionIsType, 
because_Cache, 
applyEquality, 
lambdaFormation_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
functionEquality, 
productEquality, 
inhabitedIsType, 
universeEquality, 
isect_memberFormation_alt, 
independent_pairEquality, 
functionIsTypeImplies, 
equalityIsType4, 
baseApply, 
closedConclusion, 
intEquality, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
intWeakElimination, 
isectIsType, 
equalityIsType1, 
multiplyEquality, 
minusEquality, 
promote_hyp, 
equalityElimination, 
equalityIsType2, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].
\mforall{}[f:funtype(n  -  m;\mlambda{}x.(A  (x  +  m));B)].  \mforall{}[b:B].
    (b  \mdownarrow{}\mmember{}  lifting-gen-list-rev(n;bags)  m  f
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}lst:k:\{m..n\msupminus{}\}  {}\mrightarrow{}  (A  k)
                ((\mforall{}[k:\{m..n\msupminus{}\}].  lst  k  \mdownarrow{}\mmember{}  bags  k)  \mwedge{}  ((uncurry-gen(n)  m  (\mlambda{}x.f)  lst)  =  b)))
 Date html generated: 
2019_10_15-AM-11_04_47
 Last ObjectModification: 
2018_10_09-AM-10_53_21
Theory : bags
Home
Index