Nuprl Lemma : uncurry-gen_wf2

[B:Type]. ∀[n:ℕ]. ∀[m:ℕ1]. ∀[q:ℕ1]. ∀[A:ℕn ⟶ Type].
[g:(k:{q..n-} ⟶ (A k)) ⟶ funtype(n m;λx.(A (x m));B)].
  (uncurry-gen(n) g ∈ (k:{q..n-} ⟶ (A k)) ⟶ B)


Proof




Definitions occuring in Statement :  uncurry-gen: uncurry-gen(n) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] nat: int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: sq_type: SQType(T) squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q uncurry-gen: uncurry-gen(n) funtype: funtype(n;A;T) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  subtract: m
Lemmas referenced :  subtract_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_formula_prop_wf le_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal_wf subtype_base_sq int_subtype_base lelt_wf squash_wf true_wf subtype_rel_self iff_weakening_equal ge_wf less_than_wf int_seg_wf primrec_wf primrec-unroll lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eq_int_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int assert_of_eq_int decidable__lt subtype_rel-equal minus-add minus-minus add-associates minus-one-mul add-mul-special add-swap add-commutes mul-distributes-right two-mul zero-add one-mul itermMultiply_wf int_term_value_mul_lemma zero-mul add-zero nat_wf funtype_wf add-member-int_seg1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_pairFormation dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality natural_numberEquality addEquality productElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation instantiate cumulativity equalityTransitivity equalitySymmetry applyEquality imageElimination imageMemberEquality baseClosed intWeakElimination lambdaFormation axiomEquality functionEquality functionExtensionality universeEquality equalityElimination promote_hyp multiplyEquality minusEquality

Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[q:\mBbbN{}m  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].
\mforall{}[g:(k:\{q..n\msupminus{}\}  {}\mrightarrow{}  (A  k))  {}\mrightarrow{}  funtype(n  -  m;\mlambda{}x.(A  (x  +  m));B)].
    (uncurry-gen(n)  m  g  \mmember{}  (k:\{q..n\msupminus{}\}  {}\mrightarrow{}  (A  k))  {}\mrightarrow{}  B)



Date html generated: 2018_05_21-PM-06_26_43
Last ObjectModification: 2018_05_19-PM-05_19_06

Theory : bags


Home Index