Nuprl Lemma : uncurry-rev_wf

[B:Type]. ∀[n:ℕ]. ∀[A:ℕn ⟶ Type]. ∀[f:funtype(n;A;B)].  (uncurry-rev(n;f) ∈ (k:ℕn ⟶ (A k)) ⟶ B)


Proof




Definitions occuring in Statement :  uncurry-rev: uncurry-rev(n;f) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uncurry-rev: uncurry-rev(n;f) uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B uiff: uiff(P;Q) subtract: m less_than: a < b squash: T true: True
Lemmas referenced :  nat_wf add-zero int_formula_prop_eq_lemma intformeq_wf decidable__equal_int int_seg_wf add-member-int_seg2 le_wf int_term_value_subtract_lemma itermSubtract_wf decidable__le subtract_wf funtype_wf subtype_rel-equal lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermAdd_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties false_wf uncurry-gen_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation sqequalRule lambdaFormation hypothesis setElimination rename dependent_functionElimination addEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality cumulativity because_Cache productElimination imageElimination functionExtensionality imageMemberEquality baseClosed functionEquality universeEquality isect_memberFormation introduction axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[f:funtype(n;A;B)].    (uncurry-rev(n;f)  \mmember{}  (k:\mBbbN{}n  {}\mrightarrow{}  (A  k))  {}\mrightarrow{}  B)



Date html generated: 2016_05_15-PM-03_03_29
Last ObjectModification: 2016_01_16-AM-08_35_45

Theory : bags


Home Index