Nuprl Lemma : uncurry-gen_wf

[B:Type]. ∀[n:ℕ]. ∀[m:ℕ1]. ∀[A:ℕn ⟶ Type]. ∀[g:(k:ℕn ⟶ (A k)) ⟶ funtype(n m;λx.(A (x m));B)].
  (uncurry-gen(n) g ∈ (k:ℕn ⟶ (A k)) ⟶ B)


Proof




Definitions occuring in Statement :  uncurry-gen: uncurry-gen(n) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) uncurry-gen: uncurry-gen(n) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  funtype: funtype(n;A;T) primrec: primrec(n;b;c) less_than: a < b less_than': less_than'(a;b) true: True squash: T bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf funtype_wf int_seg_properties itermSubtract_wf int_term_value_subtract_lemma add-member-int_seg2 lelt_wf subtract_wf le_wf decidable__le intformnot_wf int_formula_prop_not_lemma decidable__equal_int subtype_base_sq set_subtype_base int_subtype_base intformeq_wf int_formula_prop_eq_lemma decidable__lt subtype_rel_self eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int subtype_rel-equal lt_int_wf assert_of_lt_int top_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int nequal-le-implies itermAdd_wf int_term_value_add_lemma int_seg_subtype_nat false_wf add-member-int_seg1 nat_wf funtype-unroll assert_wf bnot_wf not_wf equal-wf-T-base zero-add add-is-int-iff add-associates add-swap add-commutes bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry functionEquality because_Cache applyEquality functionExtensionality cumulativity productElimination dependent_set_memberEquality universeEquality unionElimination instantiate applyLambdaEquality hypothesis_subsumption equalityElimination lessCases baseClosed imageMemberEquality axiomSqEquality imageElimination promote_hyp addEquality baseApply closedConclusion

Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].
\mforall{}[g:(k:\mBbbN{}n  {}\mrightarrow{}  (A  k))  {}\mrightarrow{}  funtype(n  -  m;\mlambda{}x.(A  (x  +  m));B)].
    (uncurry-gen(n)  m  g  \mmember{}  (k:\mBbbN{}n  {}\mrightarrow{}  (A  k))  {}\mrightarrow{}  B)



Date html generated: 2019_10_15-AM-11_04_15
Last ObjectModification: 2018_08_25-PM-02_15_10

Theory : bags


Home Index