Nuprl Lemma : cut-order_antisymmetry

[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[f:sys-antecedent(es;X)]. ∀[a,b:E(X)].
  (a b ∈ E(X)) supposing (b ≤(X;f) and a ≤(X;f) b)


Proof




Definitions occuring in Statement :  cut-order: a ≤(X;f) b sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uimplies: supposing a uall: [x:A]. B[x] top: Top universe: Type equal: t ∈ T
Lemmas :  cut-order-causle cut-order_wf es-E-interface_wf sys-antecedent_wf eclass_wf top_wf es-E_wf event-ordering+_subtype event-ordering+_wf assert_elim in-eclass_wf subtype_base_sq bool_wf bool_subtype_base es-causle_antisymmetry assert_wf

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:sys-antecedent(es;X)].  \mforall{}[a,b:E(X)].
    (a  =  b)  supposing  (b  \mleq{}(X;f)  a  and  a  \mleq{}(X;f)  b)



Date html generated: 2015_07_21-PM-04_05_27
Last ObjectModification: 2015_01_27-PM-05_48_00

Home Index