Nuprl Lemma : eo-forward-split-before
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[e,x:E].  before(e) = (before(x) @ before(e)) ∈ (E List) supposing x ≤loc e 
Proof
Definitions occuring in Statement : 
eo-forward: eo.e
, 
event-ordering+: EO+(Info)
, 
es-before: before(e)
, 
es-le: e ≤loc e' 
, 
es-E: E
, 
append: as @ bs
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
list_wf, 
es-before_wf, 
append_wf, 
squash_wf, 
true_wf, 
eo-forward-before, 
iff_weakening_equal, 
es-before-partition, 
append_assoc, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
es-closed-open-interval-decomp, 
equal_wf, 
es-closed-open-interval_wf, 
es-le_wf, 
event-ordering+_subtype, 
es-E_wf, 
event-ordering+_wf, 
append-nil, 
subtype_rel_list, 
top_wf, 
es-closed-open-interval-nil
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[e,x:E].    before(e)  =  (before(x)  @  before(e))  supposing  x  \mleq{}loc  e 
Date html generated:
2015_07_17-PM-00_05_37
Last ObjectModification:
2015_02_04-PM-05_40_09
Home
Index