Nuprl Lemma : es-interface-local-state-cases

[Info:Type]. ∀[es:EO+(Info)]. ∀[A,T:Type]. ∀[X:EClass(A)]. ∀[base:T]. ∀[f:T ─→ A ─→ T]. ∀[e:E].
  (local-state(f;base;X;e)
  if e ∈b then if e ∈b prior(X) then local-state(f;base;X;prior(X)(e)) else base fi  X(e)
    if e ∈b prior(X) then local-state(f;base;X;prior(X)(e))
    else base
    fi 
  ∈ T)


Proof




Definitions occuring in Statement :  es-interface-local-state: local-state(f;base;X;e) es-prior-interface: prior(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E ifthenelse: if then else fi  uall: [x:A]. B[x] apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  es-interface-local-state-prior es-E_wf event-ordering+_subtype eclass_wf event-ordering+_wf and_wf equal_wf eclass-val_wf equal-wf-T-base assert_wf bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A,T:Type].  \mforall{}[X:EClass(A)].  \mforall{}[base:T].  \mforall{}[f:T  {}\mrightarrow{}  A  {}\mrightarrow{}  T].  \mforall{}[e:E].
    (local-state(f;base;X;e)
    =  if  e  \mmember{}\msubb{}  X  then  f  if  e  \mmember{}\msubb{}  prior(X)  then  local-state(f;base;X;prior(X)(e))  else  base  fi    X(e)
        if  e  \mmember{}\msubb{}  prior(X)  then  local-state(f;base;X;prior(X)(e))
        else  base
        fi  )



Date html generated: 2015_07_21-PM-03_43_13
Last ObjectModification: 2015_01_27-PM-06_26_55

Home Index