Nuprl Lemma : es-interface-predecessors-equal-subtype

[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].
  ∀[e:E]. (≤(X)(e) = ≤(Y)(e) ∈ ({e':E(X)| loc(e') loc(e) ∈ Id}  List)) supposing ∀e:E. (↑e ∈b ⇐⇒ ↑e ∈b Y)


Proof




Definitions occuring in Statement :  es-interface-predecessors: (X)(e) es-E-interface: E(X) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) es-E: E Id: Id list: List assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  universe: Type equal: t ∈ T
Lemmas :  es-interface-predecessors-equal strong-subtype-equal-lists strong-subtype-set3 equal_wf strong-subtype-self es-interface-predecessors_wf es-E_wf event-ordering+_subtype all_wf iff_wf assert_wf in-eclass_wf eclass_wf top_wf event-ordering+_wf

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].
    \mforall{}[e:E].  (\mleq{}(X)(e)  =  \mleq{}(Y)(e))  supposing  \mforall{}e:E.  (\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  Y)



Date html generated: 2015_07_21-PM-03_33_33
Last ObjectModification: 2015_01_27-PM-06_35_27

Home Index