Nuprl Lemma : fpf-all-single-decl

[A:Type]. ∀eq:EqDecider(A). ∀[P:x:A ─→ Type ─→ ℙ]. ∀x:A. ∀[v:Type]. (∀y∈dom(x v). w=x v(y)   P[y;w] ⇐⇒ P[x;v])


Proof




Definitions occuring in Statement :  fpf-all: x∈dom(f). v=f(x)   P[x; v] fpf-single: v deq: EqDecider(T) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ─→ B[x] universe: Type
Lemmas :  false_wf iff_transitivity assert_wf bor_wf eqof_wf bfalse_wf or_wf equal_wf iff_weakening_uiff assert_of_bor safe-assert-deq member_wf all_wf and_wf
\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[P:x:A  {}\mrightarrow{}  Type  {}\mrightarrow{}  \mBbbP{}].  \mforall{}x:A.  \mforall{}[v:Type].  (\mforall{}y\mmember{}dom(x  :  v).  w=x  :  v(y)  {}\mRightarrow{}    P[y;w]  \mLeftarrow{}{}\mRightarrow{}  P[x;v])



Date html generated: 2015_07_17-AM-11_13_57
Last ObjectModification: 2015_01_28-AM-07_41_14

Home Index