Nuprl Lemma : fpf-cap_functionality_wrt_sub
∀[A:Type]. ∀[d1,d2,d3,d4:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[f,g:a:A fp-> B[a]]. ∀[x:A]. ∀[z:B[x]].
(f(x)?z = g(x)?z ∈ B[x]) supposing ((↑x ∈ dom(f)) and f ⊆ g)
Proof
Definitions occuring in Statement :
fpf-sub: f ⊆ g
,
fpf-cap: f(x)?z
,
fpf-dom: x ∈ dom(f)
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ─→ B[x]
,
universe: Type
,
equal: s = t ∈ T
Lemmas :
assert_wf,
fpf-dom_wf,
subtype-fpf2,
top_wf,
subtype_top,
fpf-sub_wf,
fpf_wf,
deq_wf,
bool_wf,
equal-wf-T-base,
bnot_wf,
not_wf,
eqtt_to_assert,
uiff_transitivity,
eqff_to_assert,
assert_of_bnot,
fpf-dom_functionality2
\mforall{}[A:Type]. \mforall{}[d1,d2,d3,d4:EqDecider(A)]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[f,g:a:A fp-> B[a]]. \mforall{}[x:A]. \mforall{}[z:B[x]].
(f(x)?z = g(x)?z) supposing ((\muparrow{}x \mmember{} dom(f)) and f \msubseteq{} g)
Date html generated:
2015_07_17-AM-09_18_17
Last ObjectModification:
2015_01_28-AM-07_50_51
Home
Index