Nuprl Lemma : fpf-inv-rename_wf

[A,C:Type]. ∀[B:A ─→ Type]. ∀[D:C ─→ Type]. ∀[rinv:C ─→ (A?)]. ∀[r:A ─→ C]. ∀[f:c:C fp-> D[c]].
  (fpf-inv-rename(r;rinv;f) ∈ a:A fp-> B[a]) supposing ((∀a:A. (D[r a] B[a] ∈ Type)) and inv-rel(A;C;r;rinv))


Proof




Definitions occuring in Statement :  fpf-inv-rename: fpf-inv-rename(r;rinv;f) fpf: a:A fp-> B[a] uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] unit: Unit member: t ∈ T apply: a function: x:A ─→ B[x] union: left right universe: Type equal: t ∈ T inv-rel: inv-rel(A;B;f;finv)
Lemmas :  mapfilter_wf isl_wf unit_wf2 assert_wf outl_wf subtype_rel-equal iff_weakening_equal l_member_wf member_map_filter equal_wf true_wf false_wf
\mforall{}[A,C:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[D:C  {}\mrightarrow{}  Type].  \mforall{}[rinv:C  {}\mrightarrow{}  (A?)].  \mforall{}[r:A  {}\mrightarrow{}  C].  \mforall{}[f:c:C  fp->  D[c]].
    (fpf-inv-rename(r;rinv;f)  \mmember{}  a:A  fp->  B[a])  supposing 
          ((\mforall{}a:A.  (D[r  a]  =  B[a]))  and 
          inv-rel(A;C;r;rinv))



Date html generated: 2015_07_17-AM-11_11_17
Last ObjectModification: 2015_02_04-PM-05_06_47

Home Index