Nuprl Lemma : fpf-join-cap-sq

[A:Type]. ∀[eq:EqDecider(A)]. ∀[f,g:a:A fp-> Top]. ∀[x:A]. ∀[z:Top].
  (f ⊕ g(x)?z if x ∈ dom(f) then f(x)?z else g(x)?z fi )


Proof




Definitions occuring in Statement :  fpf-join: f ⊕ g fpf-cap: f(x)?z fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top universe: Type sqequal: t
Lemmas :  fpf-join-ap-sq fpf-dom_wf fpf-join_wf bool_wf btrue_wf eqtt_to_assert eqff_to_assert equal-wf-T-base assert_wf bnot_wf not_wf fpf-join-dom or_wf top_wf fpf_wf deq_wf uiff_transitivity assert_of_bnot
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  Top].  \mforall{}[x:A].  \mforall{}[z:Top].
    (f  \moplus{}  g(x)?z  \msim{}  if  x  \mmember{}  dom(f)  then  f(x)?z  else  g(x)?z  fi  )



Date html generated: 2015_07_17-AM-09_20_09
Last ObjectModification: 2015_01_28-AM-07_48_02

Home Index