Nuprl Lemma : fpf-join-cap-sq
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[f,g:a:A fp-> Top]. ∀[x:A]. ∀[z:Top].
(f ⊕ g(x)?z ~ if x ∈ dom(f) then f(x)?z else g(x)?z fi )
Proof
Definitions occuring in Statement :
fpf-join: f ⊕ g
,
fpf-cap: f(x)?z
,
fpf-dom: x ∈ dom(f)
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
ifthenelse: if b then t else f fi
,
uall: ∀[x:A]. B[x]
,
top: Top
,
universe: Type
,
sqequal: s ~ t
Lemmas :
fpf-join-ap-sq,
fpf-dom_wf,
fpf-join_wf,
bool_wf,
btrue_wf,
eqtt_to_assert,
eqff_to_assert,
equal-wf-T-base,
assert_wf,
bnot_wf,
not_wf,
fpf-join-dom,
or_wf,
top_wf,
fpf_wf,
deq_wf,
uiff_transitivity,
assert_of_bnot
\mforall{}[A:Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[f,g:a:A fp-> Top]. \mforall{}[x:A]. \mforall{}[z:Top].
(f \moplus{} g(x)?z \msim{} if x \mmember{} dom(f) then f(x)?z else g(x)?z fi )
Date html generated:
2015_07_17-AM-09_20_09
Last ObjectModification:
2015_01_28-AM-07_48_02
Home
Index