Nuprl Lemma : fpf-rename-dom2

[A,C:Type]. ∀[eqa:EqDecider(A)]. ∀[eqc:EqDecider(C)]. ∀[eqc':Top]. ∀[r:A ─→ C]. ∀[f:a:A fp-> Top]. ∀[a:A].
  {↑a ∈ dom(rename(r;f)) supposing ↑a ∈ dom(f)}


Proof




Definitions occuring in Statement :  fpf-rename: rename(r;f) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top guard: {T} apply: a function: x:A ─→ B[x] universe: Type
Lemmas :  assert-deq-member map_wf assert_witness deq-member_wf assert_wf fpf-dom_wf fpf_wf top_wf deq_wf member_map l_member_wf
\mforall{}[A,C:Type].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[eqc:EqDecider(C)].  \mforall{}[eqc':Top].  \mforall{}[r:A  {}\mrightarrow{}  C].  \mforall{}[f:a:A  fp->  Top].
\mforall{}[a:A].
    \{\muparrow{}r  a  \mmember{}  dom(rename(r;f))  supposing  \muparrow{}a  \mmember{}  dom(f)\}



Date html generated: 2015_07_17-AM-11_10_45
Last ObjectModification: 2015_01_28-AM-07_44_30

Home Index