Nuprl Lemma : fpf-restrict_wf

[A:Type]. ∀[B:A ─→ Type]. ∀[f:x:A fp-> B[x]]. ∀[P:A ─→ 𝔹].  (fpf-restrict(f;P) ∈ x:{x:A| ↑(P x)}  fp-> B[x])


Proof




Definitions occuring in Statement :  fpf-restrict: fpf-restrict(f;P) fpf: a:A fp-> B[a] assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ─→ B[x] universe: Type
Lemmas :  filter_type assert_wf l_member_wf set_wf bool_wf fpf_wf subtype_rel_dep_function subtype_rel_self l_member-settype member_filter
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].    (fpf-restrict(f;P)  \mmember{}  x:\{x:A|  \muparrow{}(P  x)\}    f\000Cp->  B[x])



Date html generated: 2015_07_17-AM-11_14_39
Last ObjectModification: 2015_01_28-AM-07_40_45

Home Index