Nuprl Lemma : fpf-single-valued_wf

[A,V:Type]. ∀[B:A ─→ Type].
  ∀[eq:EqDecider(A)]. ∀[g:x:A fp-> B[x] List].  (fpf-single-valued(A;eq;x.B[x];V;g) ∈ ℙsupposing ∀a:A. (B[a] ⊆V)


Proof




Definitions occuring in Statement :  fpf-single-valued: fpf-single-valued(A;eq;x.B[x];V;g) fpf: a:A fp-> B[a] deq: EqDecider(T) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  all_wf assert_wf fpf-dom_wf subtype-fpf2 top_wf subtype_top list_wf l_member_wf fpf-ap_wf fpf_wf deq_wf subtype_rel_wf
\mforall{}[A,V:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}[eq:EqDecider(A)].  \mforall{}[g:x:A  fp->  B[x]  List].    (fpf-single-valued(A;eq;x.B[x];V;g)  \mmember{}  \mBbbP{}) 
    supposing  \mforall{}a:A.  (B[a]  \msubseteq{}r  V)



Date html generated: 2015_07_17-AM-09_16_56
Last ObjectModification: 2015_01_28-AM-07_51_31

Home Index