Nuprl Lemma : fpf-single-valued_wf
∀[A,V:Type]. ∀[B:A ─→ Type].
  ∀[eq:EqDecider(A)]. ∀[g:x:A fp-> B[x] List].  (fpf-single-valued(A;eq;x.B[x];V;g) ∈ ℙ) supposing ∀a:A. (B[a] ⊆r V)
Proof
Definitions occuring in Statement : 
fpf-single-valued: fpf-single-valued(A;eq;x.B[x];V;g)
, 
fpf: a:A fp-> B[a]
, 
deq: EqDecider(T)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
all_wf, 
assert_wf, 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
subtype_top, 
list_wf, 
l_member_wf, 
fpf-ap_wf, 
fpf_wf, 
deq_wf, 
subtype_rel_wf
\mforall{}[A,V:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}[eq:EqDecider(A)].  \mforall{}[g:x:A  fp->  B[x]  List].    (fpf-single-valued(A;eq;x.B[x];V;g)  \mmember{}  \mBbbP{}) 
    supposing  \mforall{}a:A.  (B[a]  \msubseteq{}r  V)
Date html generated:
2015_07_17-AM-09_16_56
Last ObjectModification:
2015_01_28-AM-07_51_31
Home
Index