Nuprl Lemma : graph-rcvs_wf

[S:Id List]. ∀[G:Graph(S)]. ∀[a:Id ─→ Id ─→ Id]. ∀[b:Id]. ∀[j:{j:Id| (j ∈ S)} ].  (graph-rcvs(S;G;a;b;j) ∈ Knd List)


Proof




Definitions occuring in Statement :  graph-rcvs: graph-rcvs(S;G;a;b;j) Knd: Knd id-graph: Graph(S) Id: Id l_member: (x ∈ l) list: List uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ─→ B[x]
Lemmas :  set_wf Id_wf l_member_wf id-graph_wf list_wf list-subtype mapfilter_wf deq-member_wf id-deq_wf subtype_rel-deq sq_stable__l_member decidable__equal_Id equal_wf Knd_wf assert_wf rcv_wf mk_lnk_wf
\mforall{}[S:Id  List].  \mforall{}[G:Graph(S)].  \mforall{}[a:Id  {}\mrightarrow{}  Id  {}\mrightarrow{}  Id].  \mforall{}[b:Id].  \mforall{}[j:\{j:Id|  (j  \mmember{}  S)\}  ].
    (graph-rcvs(S;G;a;b;j)  \mmember{}  Knd  List)



Date html generated: 2015_07_17-AM-09_13_33
Last ObjectModification: 2015_01_28-AM-07_55_36

Home Index