Nuprl Lemma : graph-rcvset_wf
∀[a:Id ─→ Id ─→ Id]. ∀[b:Id]. ∀[S:Id List]. ∀[G:Graph(S)]. ∀[k:Knd].  (graph-rcvset(a;b;S;G;k) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
graph-rcvset: graph-rcvset(a;b;S;G;k)
, 
Knd: Knd
, 
id-graph: Graph(S)
, 
Id: Id
, 
list: T List
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
Lemmas : 
isrcv_wf, 
bool_wf, 
eqtt_to_assert, 
eq_id_wf, 
tagof_wf, 
assert-eq-id, 
lname_wf, 
lnk_wf, 
lsrc_wf, 
ldst_wf, 
deq-member_wf, 
Id_wf, 
id-deq_wf, 
assert-deq-member, 
l_member_wf, 
subtype_rel_list, 
Knd_wf, 
id-graph_wf, 
list_wf
\mforall{}[a:Id  {}\mrightarrow{}  Id  {}\mrightarrow{}  Id].  \mforall{}[b:Id].  \mforall{}[S:Id  List].  \mforall{}[G:Graph(S)].  \mforall{}[k:Knd].    (graph-rcvset(a;b;S;G;k)  \mmember{}  \mBbbB{})
Date html generated:
2015_07_17-AM-09_13_21
Last ObjectModification:
2015_01_28-AM-07_55_39
Home
Index